首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
采用Gleeble-1500热模拟实验机及光学显微镜和透射电子显微镜研究了Ti-47Al-2Cr-0.2Mo(原子分数,%)合金在2.5 s-1,1050~1150℃,道次保温时间分别为1 min、5 min、10 min条件下的多道次热压缩变形行为及其组织演化规律。结果表明,增大道次变形量,合金软化率增大;随着道次间保温时间的延长,合金软化率逐渐增大;变形及保温温度升高,合金软化率提高。动态和亚动态再结晶是合金发生软化的主要原因。再结晶优先发生于层片晶团边界处。随着变形温度升高,γ晶粒内的孪生增多。经过热压缩变形后,组织被细化和均匀化。位错和孪生是主要的变形机制。  相似文献   

2.
ZK60镁合金热变形过程中的动态再结晶动力学   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟机对ZK60镁合金在温度为200~400℃、应变速率为0.001~10s-1、最大变形量为60%的条件下进行恒应变速率高温压缩实验,研究高温变形过程中合金的动态再结晶行为;采用EM模型描述合金的动态回复曲线,以此为基础,得出ZK60合金热压缩过程中的动态再结晶动力学Avrami方程.利用有限元模拟合金热压缩过程中的动态再结晶.结果表明ZK60合金热压缩过程中由于存在动态再结晶的软化作用,流变应力达到峰值后逐渐减小,并最终达到稳态;随着变形量的增加和变形温度的升高,动态再结晶体积分数增加,合金变形更加均匀;随着应变速率的增加,动态再结晶分数有所减小,且.变形也更不均匀.  相似文献   

3.
利用Gleeble-3500热模拟试验机,对电子束冷床熔铸制备的Ti-6Al-4V(TC4)钛合金在变形温度为850~1000℃、应变速率为0.01~1 s~(-1)和总变形量为50%条件下进行多道次热压缩模拟实验,研究铸态合金的多道次压缩热变形行为及微观组织演变规律。结果表明:合金的流变应力随变形温度的升高和应变速率的降低均呈降低趋势;不同变形温度下随应变速率的降低,合金的软化率逐渐升高,且变形温度越高,各道次间软化率趋于稳定;在变形温度950~1000℃、应变速率0.01~0.1 s~(-1)范围内合金的组织均得到不同程度的细化和均匀化,并发生动态回复与再结晶现象,此变形参数下合金的热加工性能稳定,可为电子束冷床熔铸TC4合金的铸态直接多道次热轧成形提供指导。  相似文献   

4.
Ti-1300合金锻造加工的热压缩模拟   总被引:1,自引:1,他引:0  
采用Gleeble-1500热模拟机对Ti-1300近β钛合金进行热压缩变形,研究其在温度为800~1010℃、应变速率为0.01~10 s-1、最大变形量为60%条件下的热变形行为.对热变形后的组织进行分析可知,在低应变速率下,主要发生动态再结晶;在高应变速率下,主要发生动态回复.根据试验数据得出了该合金的加工图,结果表明,Ti-1300合金在高应变速率下变形容易发生流变失稳现象,因此其锻造工艺应宜在较低的变形速率下进行,可得较细小的等轴动态再结晶组织.  相似文献   

5.
靳琛  杜延鑫  张驰  张立文 《金属热处理》2021,46(12):175-179
采用Gleeble热模拟试验机对Ni-Cr-Mo系高温合金Hastelloy C276进行单道次和双道次热压缩试验,获得了不同热变形条件下的流变应力曲线和微观组织,在此基础上回归了该合金热变形物理冶金模型及参数,进而构建了微观组织拓扑演化的元胞自动机模型。结果表明:Hastelloy C276高温合金在高温热压缩过程中易发生动态再结晶,当动态再结晶不完全时,在热压缩保温或道次间歇内,再结晶晶粒将进一步快速生长而发生亚动态再结晶。Hastelloy C276高温合金再结晶行为对变形温度、变形速率、应变量等工艺参数敏感;构建的元胞自动机模型,集成计算了热压缩和道次间歇过程中的位错密度、再结晶形核及晶界迁移等,可有效表征多工艺参数下Hastelloy C276高温合金热压缩过程中的微观组织拓扑结构演化和应力-应变响应。  相似文献   

6.
对GH4720Li合金在1080~1180℃、应变速率为0.1s~(-1)条件下的双道次压缩过程的热变形行为进行研究。结果表明:动态再结晶是GH4720Li合金的主要软化机制。在双道次压缩间歇期内,合金发生亚动态再结晶、静态再结晶和晶粒长大;低于1120℃的变形间歇期,亚动态再结晶、静态再结晶和晶粒长大的速度缓慢;1120℃及以上温度的变形间歇期,亚动态再结晶、静态再结晶和晶粒长大的速度加快。随变形温度升高和第一道次变形量增大,道次间歇期的亚动态再结晶和静态再结晶速度加快。γ′相在热变形过程中发生协调变形,并发生细化。  相似文献   

7.
为研究具有原始粗片层组织的Ti5321合金热压缩变形过程中流变应力、显微组织等随变形条件的变化,在Gleeble-2800型热模拟试验机上进行高温热压缩试验,试验温度790~850 ℃,应变速率为0.01~1 s-1,变形量为30%~70%。结果表明:Ti5321合金的软化机制与片层组织球化和动态再结晶有关,变形量和变形温度是影响合金片层组织球化及β再结晶的主要因素。同一变形温度和应变速率下,随着变形量的增大.会出现片层α相球化及β相再结晶现象。当应变速率和变形量相同时,低温变形主要发生的是片层α相球化行为,高温变形发生的是β相的再结晶。  相似文献   

8.
采用Gleeble-1500D热力模拟试验机进行新型Al-Zn-Mg-Cu高强铝合金的热压缩实验,变形程度为10%~80%,变形温度为300℃~450℃,应变速率为0.001s-1~10s-1。利用光学显微镜(OM)和透射显微镜(TEM)观察合金在不同压缩条件下的组织形貌特征,分析了热变形参数对微观组织的影响。研究结果表明,试验温度范围内,变形程度达到50%以上时,试样呈锻态变形组织,且变形程度的增大,有利于动态再结晶的进行;随着变形温度的升高和应变速率的减小,位错密度减小,亚晶粒尺寸增大。新型Al-Zn-Mg-Cu合金热压缩变形过程中主要的软化机制为动态回复和动态再结晶,当应变速率为0.01s-1、变形温度为300℃~400℃时,主要发生动态回复;当变形温度为450℃、应变速率在0.001s-1~10s-1范围内时,其变形以动态再结晶为主。  相似文献   

9.
为了模拟难变形镍基高温合金GH4720Li开坯锻造过程,采用Gleeble-3800热模拟试验机研究经均匀化处理的GH4720Li铸锭高温压缩变形时的力学流动行为,分析高温变形过程中微观组织演化规律。结果表明,GH4720Li合金在1100℃,0.1 s-1条件下应力水平达到250 MPa,且应力对热变形温度和应变速率敏感,动态再结晶是主要的软化机制。粗晶组织提高了合金动态再结晶临界变形温度和应变速率,如在变形量为60%,变形条件为1140℃,0.001 s-1和1180℃,0.001s-1才能发生完全动态再结晶。计算的粗晶GH4720Li合金热变形激活能Q=1171kJ/mol,较高的热变形激活能表明粗晶组织不利于热塑性变形和动态再结晶的发生。基于本研究,铸态GH4720Li合金开坯温度应高于1140℃,同时保证较低的应变速率,以确保动态再结晶的充分发生,实现枝晶组织破碎。  相似文献   

10.
采用Gleeble-3500热模拟试验机对6061铝合金进行等温热压缩试验,研究变形温度为300~450℃、应变速率为0.01~10s-1、压缩量为60%条件下合金的热变形特性,分析其高温流变应力行为,依据动态材料模型建立热加工图并结合热变形组织分析6061铝合金的热变形机制。结果表明,6061铝合金流变应力随变形温度的升高和应变速率的降低而下降,其高温软化机制以动态回复为主;合金在高应变速率下普遍存在流变失稳,最佳热加工区间变形温度为430~450℃,应变速率为0.01~0.05 s~(-1),该工艺范围内合金出现了部分动态再结晶组织。  相似文献   

11.
Hot compression tests of metastable β titanium alloy TB8 were carled out using a Gleeble-1500 thermal simulation testing machine in the temperature range of 750-1 100 ℃, at constant strain rate from 0.01 s^-1 to l S^-1 and with height direction reduction of 60%. Flow stress behavior and microstructure evolution during hot compression of TB8 alloy were investigated. The hyperbolic-sine-type constitutive model of TB8 alloy was obtained to provide basic data for determining reasonable forming process. The results indicate that hot deformation behavior of TB8 alloy is highly sensitive to the temperature and strain rate. An analysis of the flow stress dependence on strain rate and temperature gives a stress exponent of n=3.416 19 and a deformation activation energy of Ω=227.074 4 kJ/mol. According to the deformation microstructure, no dynamic recrystallization happens below r-phase transus temperature and as a result dynamic recovery is the predominant softening mechanism. On the other hand, the main softening mechanism is characterized as dynamic recrystallization at a slow strain rate above r-phase transus temperature.  相似文献   

12.
1 INTRODUCTIONThewroughtmagnesiumalloyshaveexcellentspecificstrengthandstiffness ,machinability ,dampcapacity ,dimensionalstability ,lowmeltingcostsandare ,hence ,veryattractiveinsuchapplicationsasau tomobile ,aviation ,electronicandcommunicationin dustry[16 ] .Investigationsontheflowstressandsofteningbehaviorofmagnesiumalloysathigherformingtem peratureandstrainratehavebeenanimportantsub jectinwroughtmagnesiumalloysforming[710 ] .InthispapertheflowstressandsofteningbehaviorofAZ31Bdeform…  相似文献   

13.
采用Gleeble-1500热模拟机研究6016铝合金单道次高温压缩变形时的显微组织演变。采用光学显微镜和透射电子显微镜分析合金在不同变形条件下的组织形貌特征。结果表明:在高温压缩变形时,该合金的变形激活能为270.257kJ/mol,硬化指数为8.5254;流变应力双曲正弦的自然对数值与温度补偿Zener-Hollomon参数自然对数值成线性关系;合金低温、低应变速率时的主要变形组织为动态回复组织,而高温变形时产生局部动态再结晶组织;该铝合金高温变形时的主要软化机制为动态回复,只有在高温、高应变速率下发生部分的动态再结晶;合金平均亚晶粒尺寸随温度补偿应变速率Zener-Hollomon参数的升高而减小。  相似文献   

14.
为研究Cu-Cr-Zr合金的高温热变形行为,建立Cu-Cr-Zr合金的高温本构模型,采用Gleeble-1500D热模拟实验机对该合金进行不同变形条件下的热压缩实验。实验参数为:变形量60%、应变速率0. 1~5 s-1、变形温度650~900℃。实验结果表明:变形初始阶段加工硬化大于动态软化作用,使得应力值迅速增大至峰值,之后动态软化大于加工硬化作用,使得应力值降低至一定程度再趋于平稳。通过对Cu-Cr-Zr合金应力-应变曲线的变化规律进行分析可得,低应变速率和高变形温度都会促进合金动态再结晶的程度。利用计算软件对实验数据进行计算和整理,将由线性拟合所得数值代入Arrhenius本构模型,可得Cu-Cr-Zr合金的本构模型。  相似文献   

15.
使用型号为Gleeble-3500的热压缩实验机进行热压缩实验,在实验中调控温度和应变速率,绘制流变应力曲线图并进行分析。对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度为360~480℃、应变速率为0.001~1 s^-1、并且热压缩试样的最大变形程度为60%条件下的形变软化现象进行了研究。经研究发现,Mg-13Gd-4Y-2Zn-0.5Zr合金的形变软化行为主要受其在不同变形条件下的动态再结晶行为的影响。设定材料常数α、n、A和Q与应变构建影响关系,将应变考虑在内后,建立了Mg-13Gd-4Y-2Zn-0.5Zr合金本构方程,其平均变形激活能为232.54 kJ·mol^-1。进行了误差检验,得到的峰值应力的实验值与计算值的平均相对误差的绝对值仅为5.5%,说明了建立的本构模型精度较高。  相似文献   

16.
7150铝合金高温热压缩变形流变应力行为   总被引:7,自引:2,他引:5  
在Gleeble-1500热模拟机上对7150铝合金进行高温热压缩实验,研究该合金在变形温度为300~450 ℃和应变速率为0.01~10 s~(-1) 条件下的流变应力行为.结果表明:流变应力在变形初期随着应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述合金的热流变行为,其变形激活能为226.698 8 kJ/mol;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,再结晶晶粒在晶界交叉处出现并且晶粒数量逐渐增加;合金热压缩变形的主要软化机制由动态回复逐步转变为动态再结晶.  相似文献   

17.
采用Gleeble-3500热模拟试验机对在变形温度500~650℃和应变速率0.001~1 s-1条件下的60NiTi合金进行热压缩变形,分析其热变形行为和显微组织,建立变形本构模型,绘制热加工图。结果表明,当压缩温度升高或应变速率降低时,峰值应力减小。合金的热变形激活能为327.89 k J/mol,热加工工艺参数为变形温度600~650℃和应变速率0.005~0.05 s-1。当变形温度升高时,合金的再结晶程度增大;当应变速率增大时,位错密度和孪晶数量增大,Ni3Ti相易于聚集;Ni3Ti析出相有利于诱发合金基体的动态再结晶。动态回复、动态再结晶和孪生是60NiTi合金热变形的主要机制。  相似文献   

18.
采用热力模拟试验机对Al-0.83Mg-0.59Si铝合金进行热压缩实验,研究了变形温度300~500 ℃、变形速率0.001~10 s-1下材料的动态再结晶行为。实验得到Al 0.83Mg 0.59Si合金在300~500 ℃变形时,软化机制以动态再结晶为主;流变应力会随着变形温度的降低和变形速率的升高而升高,较低变形速率下,动态再结晶行为更充分,应力软化现象更明显。统计实验所得流变应力曲线数据,建立了热变形本构方程,确定了合金热变形激活能Q为480.243 kJ/mol 。基于加工硬化率曲线,建立了其动态再结晶临界应变模型。结果表明,Al-0.83Mg-0.59Si铝合金的流变应力随温度的升高和变形速率的降低而降低,动态再结晶是其主要的软化机制。临界应力与峰值应力存在线性关系:σc=0.85σp-5.061 58。引入Zener Hollomon参数来描述变形条件对临界条件的影响,得到临界应变与Z参数的关系为:εc=0.000 134Z0.051 64。  相似文献   

19.
通过热模拟压缩试验研究了50SiMnVB合金钢在应变速率为0.01-10s-1、温度为800-1000 ℃条件下的高温热变形行为.利用金相显微镜观察了合金压缩变形后的显微组织,结果表明:50SiMnVB合金钢在高温热变形过程中发生了典型的动态回复和动态再结晶行为,其中,动态再结晶以连续再结晶的形式进行,且应变速率越小、...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号