首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near-infrared (NIR) quantum cutting luminescent materials Li2TeO4 doped with Pr3+ and Yb3+ were synthesized by solid-state reaction method. The dependence of Yb3+ doping concentration on the visible- and NIR-emissions, decay lifetime, and quantum efficiencies of the phosphors are investigated. Quantum cutting down-conversion involving 647 nm red emission and 960-1050 nm broadband near-infrared emission for each 487 nm blue photon absorbed is realized successfully in the resulting phosphors, of which the process of near-infrared quantum cutting could be expressed as 3P0(Pr3+) → 2F5/2(Yb3+) + 2F5/2(Yb3+). The maximum quantum cutting efficiency approaches up to 166.4% in Li2TeO4: 0.3 mol%Pr3+, 1.8 mol%Yb3+ sample corresponding to the 66.4% value of energy transfer efficiency.  相似文献   

2.
Luminescence spectra and time resolved luminescence spectra of GGG crystal doped with Pr3+ were measured at high hydrostatic pressure from ambient to 220 kbar. Effect of pressure results in the red shift of all luminescence lines related to Pr3+ ion emission equals from −0.32 to −1.02 cm−1/kbar and in the diminishing of the luminescence lifetimes. The luminescence decay related to emission from 3P0 state was single-exponential and diminished with pressure from 23 μs at ambient pressure to 6.5 μs at 165 kbar. Luminescence decay related to transition form 1D2 state was two-exponential with longer decay equal to 162 μs at ambient pressure and 120 μs at 165 kbar. We discussed effect of pressure on the 1D2 → 3H4 luminescence and emission from 3P0 state in the context of non-radiative processes that depopulate the 3P0 and populate the 1D2 state, considering mainly multiphonon relaxation processes and depopulation via the praseodymium trapped exciton state.  相似文献   

3.
A high resolution luminescence study of NaLaF4: 1%Pr3+, 5%Yb3+ and NaLaF4: 1%Ce3+, 5%Yb3+ in the UV to NIR spectral range using a InGaAs detector and a fourier transform interferometer is reported. Although the Pr3+(3P0 → 1G4), Yb3+(2F7/2 → 2F5/2) energy transfer step takes place, significant Pr3+1G4 emission around 993, 1330 and 1850 nm is observed. No experimental proof for the second energy transfer step in the down-conversion process between Pr3+ and Yb3+ can be given. In the case of NaLaF4: Ce3+, Yb3+ it is concluded that the observed Yb3+ emission upon Ce3+ 5d excitation is the result of a charge transfer process instead of down-conversion.  相似文献   

4.
An investigation of spectroscopic properties of (SrTiO3-TiO2):Pr3+ eutectic and, for comparison, of bulk SrTiO3:Pr3+ and TiO2:Pr3+crystals is presented. Luminescence spectra have been measured under both 450 nm and 350 nm excitation wavelength. For UV excitation they are characterized by a dominant red luminescence corresponding to transition from the 1D2 level of Pr3+ ions. The mechanism responsible for quenching of blue (from 3P0 state) and intensification of red luminescence is proposed to be thermally-induced radiationless relaxation involving a low-lying Pr3+-Ti4+ intervalence charge transfer state. Measured decay constants of 1D2 excited state of Pr3+ are compared with values obtained for other praseodymium doped titanate hosts.  相似文献   

5.
The fully concentrated Eu3+-based molybdenum borate Eu2MoB2O9 was synthesized by the solid-state reaction method. The photoluminescence excitation and emission spectra, the temperature dependent luminescence intensities and the decay curve were investigated. Photoluminescence spectra show that the phosphor can be efficiently excited by near-UV light and exhibits an intense red luminescence corresponding to the electric dipole transition 5D0 → 7F2 at 615 nm. The luminescence intensities and color purity were investigated by increasing the fired temperatures. The phosphor shows the stable luminescence and color purity at high temperature.  相似文献   

6.
A white-emitting phosphor Sr2SiO4: Pr3+ was synthesized through a solid-state reaction, and characterized by XRD, scanning electron microscopy (SEM), fluorescence spectrophotometer and thermo luminescence (TL) meter. Its emission spectra is composed of bluish purple (peaking at 390 nm), green (peaking at 535 nm) and red (peaking at 604 nm) light emission. They originate from the transitions of 4f → 5d, 3P0 → 3H5 and 1D2 → 3H4 of Pr3+. The afterglow emission spectrum is similar to the emission spectra. And the afterglow can last over 40 min in darkness. The TL curve shows that there is only one thermo luminescence band peak at about 376.480 K, which is responsible for the long-lasting emission.  相似文献   

7.
A P2O5-CaO-SrO-BaO phosphate glass doped with Tm3+ and glasses doped with (Tm3+, Pr3+) were used for this study. The photo-luminescence behaviors of Tm3+ and Pr3+ in phosphate glass were investigated by absorption, excitation and emission spectroscopy. The energy transfer between Tm3+ and Pr3+ in phosphate glasses (which exhibit a variety of transfer efficiencies) was studied. The experimental quantum efficiencies of the luminescence of Tm3+ η0 and (Tm3+, Pr3+) doped phosphate glasses were measured to give η/η0 = 0.447, 0.305, and 0.179 for (0.4 mol% Pr3+, 1.0 mol% Tm3+), (0.8%Pr3+, 1.0%Tm3+) and (1.6 mol% Pr3+, 1.0 mol% Tm3+), respectively. In order to verify the nature of the ion coupling in our phosphate glass system, we applied the Inokuti-Hirayama model. The non-radiative energy transfer rate from Tm3+ to Pr3+, transfer efficiencies, and the donor-acceptor distance have been calculated and compared with obtained experimental data. As usual, the efficiency and the probability of energy transfer increase with the concentration of the acceptor.  相似文献   

8.
《Optical Materials》2014,36(12):2085-2089
Processes involving visible to infrared energy conversion are presented for Pr3+–Yb3+ co-doped fluoroindate glasses. The emission in the visible and infrared regions, the luminescence decay time of the Pr3+:3P0  3H4 (482 nm), Pr3+:1D2  3H6 (800 nm), Yb3+:2F5/2  2F7/2 (1044 nm) transitions and the photoluminescence excitation spectra were measured in Pr3+ samples and in Pr3+–Yb3+ samples as a function of the Yb3+ concentration. In addition, energy transfer efficiencies were estimated from Pr3+:3P0 and Pr3+:1D2 levels to Yb3+:2F7/2 level. Down-Conversion (DC) emission is observed due to a combination of two different processes: 1-a one-step cross relaxation (Pr3+:3P0  1G4; Yb3+:2F7/2  2F5/2) resulting in one photon emitted by Pr3+ (1G4  3H5) and one photon emitted by Yb3+ (2F7/2  2F5/2); 2-a resonant two-step first order energy transfer, where the first part of energy is transferred to Yb3+ neighbor through cross relaxation (Pr3+:3P0  1G4; Yb3+:2F7/2  2F5/2) followed by a second energy transfer step (Pr3+:1G4  3H4; Yb3+:2F7/2  2F5/2). A third process leading to one IR photon emission to each visible photon absorbed involves cross relaxation energy transfer (Pr3+:1D2  3F4; Yb3+:2F7/2  2F5/2).  相似文献   

9.
Yb2+, Yb3+ co-doped silica glasses were prepared by solid state reaction under vacuum condition for the first time. The luminescence properties of Yb2+-doped silica glass were investigated. There are four strong absorption bands in the Ultraviolet (UV) light region due to the 4f14-4f135d1 transition of the Yb2+ ions. The main emission wavelength of the Yb2+-doped silica glass was around 530 nm by the excited wavelength of 398 nm. The full width at half maximum (FWHM) of the excitation and emission bands were 137 nm, 165 nm respectively. The results suggest the Yb2+-doped silica glasses may be the potential medium for white light sources based on near UV LED chip.  相似文献   

10.
In the search for new scintillator materials, Ce3+ doped chlorides are a promising class of materials, combining a high efficiency and fast response time. Even shorter response times may be achieved by replacing Ce3+ by Pr3+ or Nd3+ as the lifetime of the d-f emission is substantially shorter for these ions. Here we report on the luminescence properties of Ce3+, Pr3+ and Nd3+ in RbCl and investigate the potential as a scintillator material. Under UV excitation Ce3+ shows d-f emission between 325 and 425 nm. The emission originates from multiple (differently charge compensated) Ce3+ sites. The luminescence lifetime varies with wavelength and is ∼40 ns for the longer wavelength emission. For RbCl:Pr3+ three d-f emission band are observed between 250 and 350 nm which can be assigned to transitions from the lowest energy fd state to different 3HJ (J = 4-6) states within the 4f2 configuration of Pr3+. The decay time is ∼17 ns. For the Nd3+ activated sample a weak emission band around 220 nm is observed only at 8 K which may be due to d-f emission. The very short lifetime (4 ns) is faster than the radiative lifetime, indicating that the d-f emission is quenched by relaxation to lower lying 4f3 states or by the process of photoionization. Under VUV excitation at wavelengths below 175 nm (the bandgap of RbCl) the d-f emission is very weak for Ce3+, Pr3+ and Nd3+ doped RbCl and the emission spectra are dominated by defect related emission. This indicates that energy transfer from the host lattice to the fd states is inefficient which prevents application as a scintillator material.  相似文献   

11.
Series of Eu3+-doped lead-free germanate and borate glasses were synthesized. The MO glass modifiers (M = Ca, Sr or Ba) were partially or totally substituted by MF2 in chemical composition. In contrast to samples modified by CaO/CaF2 or SrO/SrF2, the germanate glass samples containing BaO and/or BaF2 are fully amorphous, while the lead-free borate glasses are fully amorphous, independently from glass modifiers. Effect of glass modifiers on spectroscopic properties of Eu3+ were systematically investigated.For that reason, excitation and emission spectra of Eu3+ ions in examined systems were registered. Based on the emission spectra, ratio of integrated luminescence intensity of the 5D0 → 7F2 transition to that of the 5D0 → 7F1 transition (R factor) was calculated. Moreover, the luminescence decay curves were collected and the luminescence lifetimes of the 5D0 excited state of Eu3+ ions were determined in function of MF2 concentration.  相似文献   

12.
Tm3+/Yb3+-codoped fluorophosphate glass is prepared by conventional melt-quenching method and the thermal stability of the glass is analyzed. The Judd–Ofelt parameters, radiation emission rates, radiative lifetime and branching ratios of prepared samples are calculated based on the absorption spectra. Upon excitation of a conventional 980 nm laser diode, 1.8 μm emission is obtained from Yb3+/Tm3+ codoped fluorophosphate. Additionally, the energy transfer between Yb3+ and Tm3+ ions are quantitatively analyzed. Hence, this Yb3+/Tm3+ codoped fluorophosphate glass possessing high energy transfer efficiency and excellent thermal stability is a good candidate for efficient 1.8 μm laser.  相似文献   

13.
Er3+/Yb3+ doped strontium titanate borosilicate glass was prepared. Glass ceramic was prepared by controlled heat treatment (at 955 °C) of glass. Ti10O19 and Sr3Ti2O7 were found as major crystalline phases. The emission spectra of glass and glass ceramic samples were investigated under 976 nm laser excitation. In glass ceramic, the intensity of the emitted radiation was much higher (≈50 times for green and ≈10 times for red emission) than in the glass. A new three photon process was found to be responsible for emission at low power which is not yet observed in Er3+/Yb3+:SrO⋅TiO2 glass ceramic system to the best of our knowledge. The details of upconversion mechanisms e.g. Energy Transfer (ET) and Excited State Absorption (ESA) were studied by power-intensity log dependence. It is expected that Er3+/Yb3+ doped nanocrystalline (?10 nm) Sr3Ti2O7 phase was responsible for the observed upconversion phenomenon in glass ceramic.  相似文献   

14.
The 2.0 μm emission properties and thermal stability of Yb-Tm-Ho triply-doped silicate glass are investigated. The characteristic temperatures, absorption spectrum and fluorescence spectra of the glasses are measured. Intensive emission near 2.0 μm is observed upon excitation at 980 nm and the corresponding mechanisms are discussed. Based on the measured absorption spectra, the absorption and emission cross sections, the Judd-Ofelt parameters and radiative properties are calculated and discussed. The predicted spontaneous transition probability for Ho3+:5I7 → 5I8 transition in silicate glass is 58.05 s−1. The results indicate that the energy transfer in Yb3+ → Tm3+, Yb3+ → Ho3+, Tm3+ → Ho3+ is efficient and the Yb-Tm-Ho triply-doped silicate glass is a promising 2.0 μm laser glass material.  相似文献   

15.
Transparent SiO2-Al2O3-BaCO3-YF3-BaF2 glass ceramics co-doped with Yb3+/Ho3+ ions were prepared by melt quenching and subsequent heating. X-ray diffraction and transmission electron microscopy observation revealed that BaYF5 nanocrystals incorporated with Yb3+ and Ho3+ were precipitated homogeneously among the oxide glass matrix. Three upconversion emission bands centered at 483 nm, 545 nm and 645 nm, corresponding to the 5F3 → 5I8, 5S2, 5F4 → 5I8 and 5F5 → 5I8 transitions of Ho3+ respectively, were detected under 976 nm excitation, ascribing to the efficient energy transfer from Yb3+ to Ho3+. The red emission is prevailing in the precursor glass, while the green one turns to be dominant in the glass ceramic.  相似文献   

16.
Single crystal fibres of Pr3+-doped tetragonal yttria stabilized zirconia were grown by the laser floating zone method. The fibres show strong red luminescence at room temperature under ultraviolet optical pumping, which is due to the transition between the 1D2 and 3H4 multiplets of the Pr3+ ion. Additionally, in the infrared spectral range main transitions were found at ∼1140 nm and 1560 nm. Their intensity ratio was shown to be dependent on the excitation wavelength, suggesting the presence of multiple Pr3+-related centres.  相似文献   

17.
The effects of Li-doped CaTiO3:Pr3+ thin films have been investigated by varying the lithium ion concentrations from 0 to 5 wt.%. The films have been deposited on Si (100) substrate using a pulsed laser deposition technique. Structural properties of these films have been studied by the measurement of their XRD, SEM, and AFM. The variation of Li+ concentration influences the crystallinity and surface morphology of the CaTiO3:Pr3+ thin films. As Li+ content increases from 0 to 1 wt.%, the crystallinity and intensity of emission increases. The dominant emission is from 1D2 → 3H4 transition at 613 nm. The 1D2 emission quenching has also been observed in highly doped sample and is related to the cross-relaxation process between Pr3+ ions.  相似文献   

18.
The codoping of KY3F10 with Pr3+ and Yb3+ ions is investigated as a possible quantum cutting system to enhance solar cells efficiency. For one visible photon absorbed by Pr ions, two ytterbium ions are expected to be excited by two consecutive energy transfers. The subsequent emission of two infrared photons reduces thus the thermalization losses usually observed in Si solar cells. Emission spectra and lifetime decays in KY3F10 doped with 0.5% Pr3+ and codoped with 0%, 1%, 10% and 20% Yb3+ show an increase of the energy transfer efficiency from Pr3+ to Yb3+ with the Yb3+ concentration. For the first Pr3+ to Yb3+ energy transfer, an efficiency close to 100% is achieved in KY3F10: 0.5%Pr3+, 20%Yb3+. However, this promising result faces challenging issues since an increase in Yb concentration induces energy migration between Yb3+ ions which impairs the Yb3+ luminescence.  相似文献   

19.
Yb3+/Er3+ codoped Ca0.65La0.35F2.35 materials with intense red emission via upconversion were prepared by a high temperature solid-state method. Based on the upconversion luminescence properties investigations, it was found that, under 980 nm excitation, Ca0.65La0.35F2.35:20 mol.%Yb3+, xEr3+ showed intense red upconversion luminescence, which was ascribed to 4F9/2 → 4I15/2 transition of Er3+, although both green and red emissions could be detected. It was also found that the green and red emissions originated the two photon processes, and the ground-state absorption (GSA), excited-state absorption (ESA) and energy transfer (ET) processes between Er3+/Yb3+ ions and Er3+/Er3 ions were involved in the enhanced red emission mechanism.  相似文献   

20.
The effect of ytterbium (Yb3+) doping on the upconversion (UC) emission of praseodymium (Pr3+) doped in aluminum oxide based powders prepared by combustion synthesis is reported for near-infrared excitation (λ = 980 nm). Our experimental results show that the crystalline structure and the UC emission changes with the Yb3+ concentration. The sample containing only Pr3+ (1.0 wt.%) did not show any UC signal and the UC emission profiles of the samples containing Pr3+ (1.0 wt.%) and Yb3+ (0.5, 2.0 wt.%) are quite different. The sample containing 0.5 wt.% of Yb3+ has five emission lines in the visible range associated to Pr3+ 4f–4f transitions, 3P0 → 3H4 (497 nm), 3P0 → 3H5 (525 and 550 nm), 3P0 → 3H6 (620 nm) and 3P0 → 3F2 (650 nm). We believe that the UC process has its origin in energy transfer from Yb3+ ions to Pr3+ ions in Pr0.83Al11.83O19 phase. The sample containing 2.0 wt.% of Yb3+ has only one emission line in the visible range peaked at 507 nm which we believe has its origin in cooperative UC emission due to excited Yb3+ pairs in YbAlO3 phase. The samples containing Yb3+ also present UC emission lines in the near-infrared which are assigned to intrinsic lattice defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号