首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rats were exposed to either NO2 or O3 to determine whether nonciliated cells (Clara cells) could divide and differentiate into ciliated cells in the terminal bronchioles. Dividing cells were labeled with tritiated thymidine, visualized in the light and electron microscopes using autoradiographic techniques, and studied for up to 15 days after labeling. Electron microscopic autoradiography 1 hour after injection of tritiated thymidine showed that all labeled cells in the terminal bronchioles were nonciliated. However, 4 days after injection of tritiated thymidine, 67.8 per cent of the labeled cells were nonciliated and 32.2 per cent were ciliated. Light microscopic autoradiography showed that the new labeled ciliated cell population was stable for up to 15 days. These results indicate that nonciliated cells divide and the sister cells may form new ciliated and nonciliated cells. Thus, nonciliated cells can act as progenitor cells for the terminal bronchiolar epithelium.  相似文献   

2.
GnRH-secreting neurons are known to originate in the epithelium of the medial olfactory placode, whence they migrate along the axons of the terminal nerve via the forebrain and into the hypothalamus. Synaptic contact between the developing olfactory bulbs and fascicles of the vomeronasal, terminal, and olfactory nerves does not occur in Kallmann's syndrome. Consequently, there is migration arrest of GnRH cells and partial or complete failure of formation of the olfactory bulbs, resulting in severe olfactory deficit and hypogonadotropic hypogonadism. In the present study, using an immunofluorescent, double immunostaining technique and confocal laser scanning microscopy, we observed GnRH-immunoreactive neurons in the hypothalamus of a 14-week-old human fetus. However, migration of GnRH neurons was not complete, and indeed, such cells were seen to be migrating along terminal nerve fascicles beneath the cribriform plate in a 16-week-old fetus. The same immunofluorescent technique demonstrated the presence of GnRH cells in biopsies of nasal mucosa obtained from three adults with Kallmann's syndrome, one normosmic subject with hypogonadotropic hypogonadism, and a eugonadal male cadaver. These findings are consistent with two different interpretations: the nasal GnRH neurons may be vestigial, representing cells that failed to migrate during embryogenesis; alternatively, they may have been generated de novo later in life, a possibility consistent with the recognized plasticity of human postnatal olfactory neuroepithelium. They also reveal that subjects with the normosmic (i.e. non-Kallmann's) form of GnRH deficiency are able to synthesize immunologically recognizable GnRH, implying that failure of GnRH synthesis is not responsible for this type of hypogonadotropic hypogonadism.  相似文献   

3.
Vertebrate olfactory sensory neurons are replaced continuously throughout life. We studied the effect of age on proliferation in olfactory epithelium in postnatal rats ranging in age from birth (P1) until P333. Using BrdU to label dividing cells, we determined the proliferation density of basal cells, i.e., the number of labeled nuclei/unit length (240 microm) of olfactory epithelium in coronal sections from six different anterior-posterior levels from each animal. A total length of >1 m of olfactory epithelium was counted in each age group. We observed a dramatic decrease of proliferation density from P1 through P333. At P1, proliferation density is 151 cells/mm; it decreases to approximately half at P21 (70 cells/mm), and half again at P40 (37 cells/mm). At P333 the proliferation density was only 8/mm, approximately 5% of that seen at P1. The changes were clearly related to age and not to body weight, because the values were essentially identical for males and females of the same age but of different body weight. Proliferating cells appear in patches that, after P40, become more separated from one another and contain fewer cells. In 6- and 11-month-old rats, 30 and 45% of all units contained no labeled cells. We confirmed the data of others that the olfactory surface area continuously increases with age; we showed that there is a reciprocal relationship between proliferation density and surface area. The proliferating cells provide neurons to sustain growth as well as to replace dying cells.  相似文献   

4.
Ontogenetic differentiation of the GnRH-immunoreactive (GnRHir) neuron system was studied in the clawed toad Xenopus laevis by immunocytochemistry employing polyclonal antibodies against mammalian GnRH and chicken type II GnRH, and monoclonal antibodies against GnRH exhibiting wide cross-reactivity over animal classes. Toads at different stages of differentiation as well as postmetamorphic toads subjected to uni- or bilateral ablation of the olfactory placode (OPX) between developmental stages 25 and 30 were studied. GnRHir neurons and nerve fibers could not be detected before metamorphosis. Following metamorphosis, at stage 65-66, hemi-OPX toads did not exhibit any side differences in the number and overall distribution of the GnRHir neuronal structures; however, the total number of GnRHir neurons was approximately 50% of that counted in intact controls at the same developmental stages. These findings indicate that GnRHir neuroblasts differentiating on one side in the olfactory placode can appear on both sides of the brain in the course of their migration.  相似文献   

5.
The lineage of olfactory neurons has been relatively well characterized at the cellular level, but the genes that regulate the proliferation and differentiation of their progenitors are currently unknown. In this study, we report the isolation of a novel murine gene, Math4C/neurogenin1, which is distantly related to the Drosophila proneural gene atonal. We show that Math4C/neurogenin1 and the basic helix-loop-helix gene Mash1 are expressed in the olfactory epithelium by different dividing progenitor populations, while another basic helix-loop-helix gene, NeuroD, is expressed at the onset of neuronal differentiation. These expression patterns suggest that each gene marks a distinct stage of olfactory neuron progenitor development, in the following sequence: Mash1>Math4C/neurogenin1>NeuroD. We have previously reported that inactivation of Mash1 function leads to a severe reduction in the number of olfactory neurons. We show here that most cells in the olfactory epithelium of Mash1 mutant embryos fail to express Math4C/neurogenin1 or NeuroD. Strikingly, a subset of progenitor cells in a ventrocaudal domain of Mash1 mutant olfactory epithelium still express Math4C/neurogenin1 and NeuroD and differentiate into neurons. Cells in this domain also express Math4A/neurogenin2, another member of the Math4/neurogenin gene family, and not Mash1. Our results demonstrate that Mash1 is required at an early stage in the olfactory neuron lineage to initiate a differentiation program involving Math4C/neurogenin1 and NeuroD. Another gene activates a similar program in a separate population of olfactory neuron progenitors.  相似文献   

6.
7.
Neurogenesis in the adult olfactory epithelium is highly regulated in vivo. Little is known of the molecular signals which control this process, although contact with the olfactory bulb or with astrocytes has been implicated. Explants of mouse olfactory epithelium were grown in the presence or absence of several peptide growth factors. Basic fibroblast growth factor (FGF2) stimulated differentiation of sensory neurons in adult and embryonic olfactory epithelium. Other growth factors tested were ineffective. FGF2-stimulated neurons were born in vitro and expressed neurofilament, neural cell adhesion molecule, and beta-tubulin. The cells also expressed olfactory marker protein, a marker for mature olfactory sensory neurons in vivo. These bipolar neurons did not express glial fibrillary acidic protein or low-affinity nerve growth factor receptor. These results indicate that neither astrocytes nor olfactory bulb are necessary for differentiation of olfactory sensory neurons in vitro.  相似文献   

8.
Despite profound photoperiodic differences in circulating gonadotropin levels, consistent differences in the GnRH system have not been observed in Siberian hamsters (Phodopus sungorus) housed chronically in short or long days. During the transition from short to long days, however, male hamsters exhibit a transient increase in the number of cells expressing prepro-GnRH mRNA on the morning of the second long day. Here, we present two experiments designed to examine whether or not this change in mRNA level is associated with changes in GnRH protein synthesis. In the first experiment, we used RIA to measure GnRH content in preoptic area-mediobasal hypothalamic homogenates. We observed a significant increase in GnRH protein levels on the morning of the second long day relative to short- and long-day controls. The latter two groups did not differ from one another. In the second experiment, we used immunocytochemistry to quantify GnRH cell number in the various treatment groups. GnRH-immunoreactive (-ir) cell number did not increase significantly after long-day transfer relative to that in short-day controls; however, both of these groups had significantly more GnRH-ir neurons than long-day controls. We hypothesize that during the transition from short to long days, male Siberian hamsters experience a transient increase in GnRH production in a stable population of neurons. When GnRH secretion subsequently increases on long days, peptide content within neuronal cell bodies declines, leading to a decrease in the number of immunoreactive neurons detected. The rapid response of the hypothalamo-pituitary-gonadal axis in Siberian hamsters to a change in day length defines a narrow temporal window in which to identify the physiological, cellular, and molecular mechanisms mediating the photoperiodic regulation of reproduction.  相似文献   

9.
A unique feature of the olfactory epithelium is its ability to give rise to new sensory neurons throughout life and also following injury. Cells at the basal side of the epithelium serve as neurogenic progenitor cells. The enzyme ecto-5'-nucleotidase is expressed at the surface of developing nerve cells and is regarded as a marker of neural development. To study the expression pattern of the enzyme, we analyzed its distribution in the adult and developing rat olfactory organ. Labeling is restricted to specific cell types and varies between the epithelia investigated. At the basal side of the olfactory epithelium, activity of 5'-nucleotidase is associated specifically with the dark/horizontal basal cells. Neither the light/globose basal cells, which are the immediate precursors of the sensory receptor cells, nor subsets of potentially immature olfactory receptor cells are labeled. On the other hand, microvillar cells dispersed at the lumenal side of the epithelium contain 5'-nucleotidase activity. The enzyme is also present at the inner lining of the ducts of Bowman's glands as they traverse the epithelium. Within the respiratory epithelium, activity of 5'-nucleotidase is associated with basal cells as well as with the epithelial surface. During development, 5'-nucleotidase is initially limited to the respiratory epithelium, including its basal cells. Dark/horizontal basal cells of the olfactory epithelium, which are positive for 5'-nucleotidase, first appear at the border of the respiratory epithelium, suggesting that they might originate from immigrating basal cells of the respiratory epithelium. Within the vomeronasal organ, labeling is largely restricted to the receptor-free epithelium. Although the functional role of 5'-nucleotidase in the olfactory system needs to be further defined, the distribution of the enzyme can be used successfully as a marker for defined cell types.  相似文献   

10.
Changes in dividing cells of the olfactory epithelium from guinea pigs of different ages were examined by immunohistochemical staining using anti-proliferating cell nuclear antigen antibody. Numerous dividing cells were scattered diffusely in the basal layer of the olfactory epithelium at 1 and 2 months following birth and then gradually decreased with maturation until 4 months. Findings then remained constant between 4 and 24 months. Subsequently, cell numbers were found to decrease as animals became older. The number of olfactory receptor cells did not vary significantly between 1 and 30 months. Although no correlation could be found between the numbers of dividing cells and olfactory receptor cells, it is still possible that the longevity of the olfactory receptor cells changes to maintain the overall size of the neuronal population.  相似文献   

11.
In the pregnant rat, killed at about mid gestation and 1 h after injection of tritiated thymidine, 40% of the cells in the epithelium lining the uterine lumen at the implantation site were labelled. Between implantation sites fewer than 20% of the surface epithelial cells were labelled. A series of rats was given tritiated thymidine on day 12 of pregnancy and killed at intervals in the next 30 h. A percentage labelled mitoses analysis of the epithelium between implantation sites (interconceptual) and within the implantation site (conceptual) showed that cells in either region spent 7 h in DNA synthesis and 1-5 h in the G2 + 1/2 MITOSIS PHASES. The epithelial cells in the conceptual region spent 1-5 h in the G1 + 1/2 MITOSIS PHASES WHEREAS CELLS IN INTERCONCEPTual regions spent at least 11-5 h in these phases. The average cycle times of cells in conceptual regions was 10 h: in interconceptual regions minimum cycle time was 20 h and the average appeared to be considerably longer. The grain count of the epithelial cells in the conceptual region was rapidly reduced during the 30 h after injection of tritiated thymidine suggesting successive rounds of cell division. In contrast the grain count distribution of cells in interconceptual regions changed only slowly during this time. The percentage of labelled epithelial cells was determined in the animals killed up to 30 h after injection of tritiated thymidine. In both conceptual and interconceptual regions these percentages increased initially as labelled cells produced labelled progeny. In the conceptual region the increase was not maintained after 7 h as cells initially in G1 divided to give unlabelled progeny. In the interconceptual region the increase in the percentage of labelled cells continued for 14 h; thereafter the percentage did not significantly alter. The interpretation of these results is discussed in relation to the differences in the kinetic characteristics of the epithelial cells in the two regions and in relation to the morphology of the epithelium lining the uterus during pregnancy.  相似文献   

12.
13.
Nitric oxide (NO) is a diffusible free radical that functions as a second messenger and neurotransmitter. NO synthase (NOS) is highly and transiently expressed in neurons of the developing olfactory epithelium during migration and establishment of primary synapses in the olfactory bulb. NOS is first expressed at E11 in cells of the presumptive nervous layer of the olfactory placode. NOS immunoreactivity persists in the descendants of these cells that differentiate into embryonic olfactory receptor neurons (ORNs). Olfactory NOS expression in the ORN and in its afferents rapidly declines after birth and is undetectable by P7. Following bulbectomy, NOS expression is rapidly induced in the regenerating ORN and is particularly enriched in their outgrowing axons. Immunoblot and Northern blot analyses similarly demonstrate an induction of NOS protein and mRNA expression, respectively, the highest levels of which coincide with peaks of ORN regeneration. These data argue against a role for NO in odorant-sensitive signal transduction, but suggest a prominent function for NO in activity-dependent establishment of connections in both developing and regenerating olfactory neurons.  相似文献   

14.
15.
To explore a role for chemorepulsive axon guidance mechanisms in the regeneration of primary olfactory axons, we examined the expression of the chemorepellent semaphorin III (sema III), its receptor neuropilin-1, and collapsin response mediator protein-2 (CRMP-2) during regeneration of the olfactory system. In the intact olfactory system, neuropilin-1 and CRMP-2 mRNA expression define a distinct population of olfactory receptor neurons, corresponding to immature (B-50/GAP-43-positive) and a subset of mature (olfactory marker protein-positive) neurons located in the lower half of the olfactory epithelium. Sema III mRNA is expressed in pial sheet cells and in second-order olfactory neurons that are the target cells of neuropilin-1-positive primary olfactory axons. These data suggest that in the intact olfactory bulb sema III creates a molecular barrier, which helps restrict ingrowing olfactory axons to the nerve and glomerular layers of the bulb. Both axotomy of the primary olfactory nerve and bulbectomy induce the formation of new olfactory receptor neurons expressing neuropilin-1 and CRMP-2 mRNA. After axotomy, sema III mRNA is transiently induced in cells at the site of the lesion. These cells align regenerating bundles of olfactory axons. In contrast to the transient appearance of sema III-positive cells at the lesion site after axotomy, sema III-positive cells increase progressively after bulbectomy, apparently preventing regenerating neuropilin-1-positive nerve bundles from growing deeper into the lesion area. The presence of sema III in scar tissue and the concomitant expression of its receptor neuropilin-1 on regenerating olfactory axons suggests that semaphorin-mediated chemorepulsive signal transduction may contribute to the regenerative failure of these axons after bulbectomy.  相似文献   

16.
17.
Seasonal breeders, such as sheep and hamsters, by virtue of their annual cycles of reproduction, represent valuable models for the study of plasticity in the adult mammalian neuroendocrine brain. A major factor responsible for the occurrence of seasonal reproductive transitions is a striking change in the responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the inhibitory effects of gonadal steroids. However, the neural circuitry mediating these seasonal changes is still relatively unexplored. In this article, we review recent findings that have begun to define that circuitry and its plasticity in a well-studied seasonal breeder, the ewe. Tract tracing studies and immunocytochemical analyses using Fos and FRAs as markers of activation point to a subset of neuroendocrine GnRH neurons in the MBH as potential mediators of pulsatile GnRH secretion. Because the vast majority of GnRH neurons lack estrogen receptors, seasonal changes in responsiveness to estradiol are most probably conveyed by afferents. Two possible mediators of this influence are dopaminergic cells in the A14/A15 cell groups of the hypothalamus, and estrogen receptor-containing cells in the arcuate nucleus that project to the median eminence. The importance of GnRH afferents in the regulation of season breeding is underscored by observations of seasonal changes in the density of synaptic inputs onto GnRH neurons. Thyroid hormones may participate in this remodeling, because they are important in seasonal reproduction, influence the morphology of other brain systems, and thyroid hormone receptors are expressed within GnRH neurons. Finally, in the hamster, neonatal hypothyroidism affects the number of caudally placed GnRH neurons in the adult brain, suggesting that thyroid hormones may influence development of the GnRH system as well as its reproductive functions in the adult brain.  相似文献   

18.
The immunocytochemical and immuno-electron microscopic distribution of a neural proteoglycan (PG) was investigated with a monoclonal antibody, MAb 6B4, in the olfactory epithelium, the olfactory nerve, and the cells originating the epithelium and migrating along the olfactory nerve toward the forebrain in chick embryos. The PG recognized by MAb 6B4, that is 6B4 PG, in the brain of early postnatal rats, is identical to phosphacan. In chick embryos, immunoreactivity to 6B4 PG appeared on embryonic day (ED) 3-3.5 in a thin layer beneath the olfactory epithelium. It disappeared immediately, then becoming apparent in the bundles of the olfactory nerve. The immunoreactivity in the nerve bundles gradually increased during ED 5-11. On the other hand, cell surface-associated extracellular localization of the immunoreactivity was seen in the olfactory epithelium on ED 6 and afterwards. Immunofluorescent double-labeling of 6B4 PG and gonadotropin-releasing hormone (GnRH) revealed that the cell bodies of both GnRH-containing cells and other cells migrating along the olfactory nerve were surrounded by a rim immunoreactive to the PG. Under an electron microscope, the surfaces of the cell bodies and of the neurites in the nerve bundles were surrounded by deposits immunoreactive to 6B4 PG. These results indicate that 6B4 PG in chick embryos is one type of cell surface-associated extracellular matrix molecule, and that 6B4 PG covered the surfaces of migrating cells and of elongating olfactory nerve. The cell surface-associated extracellular localization of 6B4 PG found in the nasal region, taken together with the binding properties of this PG with cell adhesion molecules shown in rat brains, suggested that 6B4 PG played a role in guiding the migration of cells along the olfactory nerve in chick embryos.  相似文献   

19.
Postembryonic neurogenesis leads to a dramatic increase in the number of functional neurons within the segmental ganglia of the moth, Manduca sexta. These adult-specific neurons are generated during larval life by segment-specific arrays of individually identifiable stem cells, or neuroblasts (Nbs). By the end of the feeding larval stage, each Nb has generated a discrete nest of progeny, which ranges in size from less than 10 to more than 70 progeny. The sizes of these identifiable nests of progeny vary in a segment-specific manner, with the thoracic nests containing a greater number of progeny compared with their homologues in the simpler abdominal ganglia. In order to describe those factors that influence the size of the post-embryonic neuronal lineages, we examined the spatial and temporal pattern of postembryonic neurogenesis in the segmental ganglia of Manduca. The rates at which the identifiable nests accumulated progeny were estimated by counting the number of progeny within the nests, using sectioned material isolated from animals at stages ranging from embryonic hatching until the end of the feeding larval stage. All of the postembryonic Nbs began to generate progeny at around the time of the molt to the third larval instar. Each nest added progeny at a rate that was a characteristic of its identity and segment of origin. Although all of the nests within the thorax continued to accumulate progeny throughout the feeding larval stage, several of the abdominal nests showed little or no growth following the molt to the fifth larval instar. The thymidine analog 5-bromo 2-deoxyuridine (5-BrdU) was used to estimate the mitotic rates of the identifiable Nbs. The number of labeled progeny within a nest 24 h after application of 5-BrdU ranged from a low of 1 to 2 to a high of 11 to 13 labeled cells. In some instances there was a good correlation between the estimated mitotic rate of an identified Nb and the rate of growth of its associated nest of progeny. However, several of the identifiable nests accumulated progeny at a slower rate than predicted based on the estimated mitotic rate of the Nb. Cell death appears to be responsible for slowing the growth of the nests during the feeding larval stage. We estimate that 10% to 70% of the neurons generated during the feeding larval stage degenerate within 24 h of their birth. The level of cell death observed within a nest was dependent on both its identity and its segment of origin.  相似文献   

20.
The distribution of NADPH-diaphorase (ND) activity was histochemically investigated in the brain of the frog Rana perezi. This technique provides a highly selective labeling of neurons and tracts. In the telencephalon, labeled cells are present in the olfactory bulb, pallial regions, septal area, nucleus of the diagonal band, striatum, and amygdala. Positive neurons surround the preoptic and infundibular recesses of the third ventricle. The magnocellular and suprachiasmatic hypothalamic nuclei contain stained cells. Numerous neurons are present in the anterior, lateral anterior, central, and lateral posteroventral thalamic nuclei. Positive terminal fields are organized in the same thalamic areas but most conspicuously in the visual recipient plexus of Bellonci, corpus geniculatum of the thalamus, and the superficial ventral thalamic nucleus. Labeled fibers and cell groups are observed in the pretectal area, the mesencephalic optic tectum, and the torus semicircularis. The nuclei of the mesencephalic tegmentum contain abundant labeled cells and a conspicuous cell population is localized medial and caudal to the isthmic nucleus. Numerous cells in the rhombencephalon are distributed in the octaval area, raphe nucleus, reticular nuclei, sensory trigeminal nuclei, nucleus of the solitary tract, and, at the obex levels, the dorsal column nucleus. Positive fibers are abundant in the superior olivary nucleus, the descending trigeminal, and the solitary tracts. In the spinal cord, a large population of intensely labeled neurons is present in all fields of the gray matter throughout its rostrocaudal extent. Several sensory pathways were heavily stained including part of the olfactory, visual, auditory, and somatosensory pathways. The distribution of ND-positive cells did not correspond to any single known neurotransmitter or neuroactive molecule system. In particular, abundant codistribution of ND and catecholamines is found in the anuran brain. Double labeling techniques have revealed restricted colocalization in the same neurons and only in the posterior tubercle and locus coeruleus. If ND is in amphibians a selective marker for neurons containing nitric oxide synthase, as generally proposed, with this method the neurons that may synthesize nitric oxide would be identified. This study provides evidence that nitric oxide may be involved in novel tasks, primarily related to forebrain functions, that are already present in amphibians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号