首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pseudoternary system ZrO2-Y2O3-Cr2O3 was studied at 1600°C in air by the quenching method. Only one intermediate compound, YCrO3, was observed on the Y2O3−Cr2O3 join. ZrO2 and Y2O3 formed solid solutions with solubility limits of 47 and 38 mol%, respectively. The apex of the compatibility triangle for the cubic ZrO2, Cr2O3, and YCrO3 three-phase region was located at =17 mol% Y2O3 (83 mol% ZrO2). Below 17 mol% Y2O3, ZrO2 solid solution coexisted with Cr2O3. Cr2O3 appears to be slightly soluble in ZrO2(ss).  相似文献   

2.
Tetragonal ZrO2 ( t -ZrO2) solid solutions were prepared with addit ons of 2 mol% Y2O3 plus up to 0.45 mol% Nb2O5. The thermal expansion coefficients in both the a- and c -axis lattice directions increased with Nb2O5 alloying and the thermal expansion in the c -axis direction was greater than that in the a -axis direction over the entire composition range. This anisotropic thermal expansion behavior was related to the 4-fold coordination of Nb5+ with oxygen ions in t -ZrO2 solid solutions in the system ZrO2–Y2O3–Nb2O5. The fracture toughness continuously increased with Nb2O5 alloying and suggested that the c/a axial ratio is a more significant factor than the internal stress that arises from the thermal expansion anisotropy, in the determination of the transformability of t -ZrO2 in this system.  相似文献   

3.
The fracture strengths of sintered Al2O3 containing 20 and 40 vol% ZrO2(12 mol% CeO2)—zirconia-toughened alumina (ZTA)—composites along with the fracture resistance can be increased (e.g., to ∼900 MPa and >12 Mpa·m1/2, respectively), by increasing the mean grain size of the t -ZrO2 (and the Al2O3) from ∼0.5 μm to ∼3 μm. At these lower t -ZrO2 contents, the fracture strength-fracture resistance curves show a continuous rise as opposed to the strength maxima observed in polycrystalline t -ZrO2(12 mol% CeO2), CeTZP, and ZrO2(12 mol% CeO2) ceramics containing ≤20 vol% Al2O3. The toughened composites also exhibit excellent damage resistance with fracture strengths of 500 MPa retained with surfaces containing ∼150- N Vickers indentations which produce cracks of ∼160-μm radius. Greater damage resistance correlates with an increase in the apparent R -curve response of these composites.  相似文献   

4.
The tetragonal ( t ) and cubic ( c ) ZrO2 solid solutions in two-phase ZrO2-8 wt% Y2O3 ceramics have low and high solute content, respectively. Annealing samples sintered at 1600°C between 700° and 1400°C requires a change in the volume fraction of the coexisting phases, as well as their equilibrium Y2O3 content. The enrichment in Y2O3 content of the c -ZrO2 grains is accomplished by liquid-film migration involving the ubiquitous silicate grain-boundary phase, while the volume fraction of t -ZrO2 increases by the nucleation and growth of cap-shaped t -ZrO2 lenses. The interfaces between the c -ZrO2 matrix and the growing t -ZrO2 lenses are semicoherent.  相似文献   

5.
The transformation of ultrafine powders (particle size, 0.01 to 0.04 μm) of the system ZrO2–Al2O3, prepared by spraying their corresponding nitrate solutions into an inductively coupled plasma (ICP) of ultrahigh temperature, was investigated. The powders were composed of metastable tetragonal ZrO2 ( mt- ZrO2) and γ-Al2O3. On heating, the mt- ZrO2 (or tetragonal ZrO2, t -ZrO2) was retained up to 1200°C. At 1380°C the transformation to monoclinic ZrO2 ( m -ZrO2) occurred and the amount of the m -ZrO2 decreased with the increase in Al2O3 content, thus indicating the stabilization of the t -ZrO2 by the Al2O3, which seems to be explained in terms of the retardation of grain growth.  相似文献   

6.
Both tetragonal ( t ) and monoclinic ( m ) ZrO2 particles in ZrO2-toughened Al2O3 can give rise to toughening. In the stress field of propagating cracks, the t -ZrO2 particles can undergo the stress-induced t → m transformation, and the residual stresses around already-transformed m -ZrO2 particles can cause microcracking. The t -ZrO2 particles transformed in crack tip stress fields do not, however, also cause appreciable microcracking. The toughening increments via these distinct mechanisms are comparable. It appears that optimally fabricated Zr02-toughened Al2O3's should contain a mixture of t - and m -ZrO2.  相似文献   

7.
The cubic ( c -ZrO2) and tetragonal zirconia ( t -ZrO2) phase stability regions in the system ZrO2–Y2O3–Ta2O5 were delineated. The c -ZrO2 solid solutions are formed with the fluorite structure. The t -ZrO2 solid solutions having a c/a axial ratio (tetragonality) smaller than 1.0203 display high fracture toughness (5 to 14 MPa · m1/2), and their instability/transformability to monoclinic zirconia ( m -ZrO2) increases with increasing tetragonality. On the other hand, the t -ZrO2 solid solutions stabilized at room temperature with tetragonality greater than 1.0203 have low toughness values (2 to 5 MPa · m1/2), and their transformability is not related to the tetragonality.  相似文献   

8.
The crystallization of MgO-Al2O3-SiO2-ZrO2 glasses at 1000°C was studied. Isothermal heat treatments of a cordierite-based glass (2MgO.2Al2O3.5SiO2= Mg2Al4Si5O18) with 7 wt% ZrO2 produced surface crystallization of α-cordierite and tetragonal ZrO2 ( t -ZrO2). These phases advanced into the glass by cocrystallization of t -ZrO2 rods in an α-cordierite matrix with a well-defined orientation relation. The t -ZrO2 rods were unstable with respect to diffusional breakup (a Rayleigh instability) and decomposed into rows of aligned ellipsoidal and spheroidal particles. The t -ZrO2 was very resistant to transformation to monoclinic symmetry. With a similar glass containing 15 wt% ZrO2, surface crystallization of α-cordierite and t -ZrO2 was accompanied by internal crystallization of t -ZrO2 dendrites. Transformation of the dendrites to mono-clinic symmetry was observed under some conditions.  相似文献   

9.
Cr2O3 and ZrO2 were mixed in various ratios and pressed to form compacts, which were then sintered in carbon powder. Compacts with >30 wt% Cr2O3 were sintered to densities >98% of true density at 1500°C. This method of sintering in carbon powder can be used to prepare very dense Cr2O3-ZrO2 ceramics at a relatively low temperature, (∼1500°C) without additives.  相似文献   

10.
In the system ZrO2-Al2O3, cubic ZrO2 solid solutions containing up to 40 mol% Al2O3 crystallize at low temperatures from amorphous materials prepared by the simultaneous hydrolysis of zirconium and aluminum alkoxides. The values of the lattice parameter, a, increase linearly from 0.5095 to 0.5129 nm with increasing Al2O3 content. At higher temperatures, the solid solutions transform into tetragonal ZrO2 and α-Al2O3. Pure ZrO2 crystallizes in the tetragonal form at 415° to 440°C.  相似文献   

11.
In the system ZrO2–Al2O3, a new method for preparing ZrO2 solid solutions from ZrCl4 and AlCl3 using hydrazine monohydrate is investigated. c -ZrO2 solid solutions containing up to ∼40 mol% Al2O3 crystallize at low temperatures from amorphous materials. The formation mechanism is discussed from IR spectral data. The values of the lattice parameter α increase linearly from 0.5072 to 0.5105 nm with increasing Al2O3 content. At higher temperatures, transformation of the solid solutions proceeds as follows: c ( SS ) → t ( ss ) → t ( ss ) +α-Al2O3→ m +α-Al2O3. m -ZrO2–α-Al2O3 composite ceramics are fabricated by hot isostatic pressing for 2 h at 1250°C and 196 MPa. Microstructures and mechanical properties are examined, in connection with increasing Al2O3 content.  相似文献   

12.
Rapidly solidified ZrO2 (Y2O3)–Al2O3 powders were prepared by melting fine-particle aggregates in a high-enthalpy plasma flame and then rapidly quenching them in cold water or on a copper chill plate. To ensure complete melting and homogenization of all the particles before quenching, the water-quenching treatment was often repeated two or even three times. The resulting melt-quenched powders and splats displayed a variety of metastable structures, depending on composition and cooling rate. ZrO2-rich material developed an extended solid solution phase, whereas eutectic material formed a nanofibrous or amorphous structure. Under high cooling rate conditions, the ZrO2-rich material developed a nanocomposite structure ( t -ZrO2+α-Al2O) directly by melt-quenching, whereas, more typically, such a structure was developed only after postannealing of the as-quenched metastable material.  相似文献   

13.
Aqueous mixtures of zirconium acetate and aluminum nitrate were pyrolyzed and crystallized to form a metastable solid solution, Zr1- x Al x O2− x /2 ( x < 0.57). The initial, metastable phase partitions at higher temperatures to form two metastable phases, viz., t −ZrO2+γ-Al2O3 with a nano-scale microstructure. The microstructural observations associated with the γ- →α-Al2O3 phase transformation in the t -ZrO2 matrix are reported for compositions containing 10, 20, and 40 mol% A12O3. During this phase transformation, the α-Al2O3 grains take the form of a colony of irregular, platelike grains, all with a common crystallographic orientation. The plates contain ZrO2 inclusions and are separated by ZrO2 grains. The volume fraction of A12O3 and the heat treatment conditions influence the final microstructure. At lower volume fractions of A12O3, the colonies coarsen to single, irregular plates, surrounded by polycrystalline ZrO2. Interpenetrating microstructures produced at high volume fractions of A12O3 exhibit very little grain growth for periods up to 24 h at 1400°C.  相似文献   

14.
Fluorite type HfO2 and ZrO2 solid solutions were prepared by doping with 8 to 14 mol% of Ho2O3 and Y2O3, and their lattice parameters were determined. In both HfO2 and ZrO2 systems, the lattice parameters of the solid solutions containing Ho203 were consistently greater than those containing the same amounts of Y2O3. This indicated that the ionic radius of Ho3+ was larger than that of Y3+ in the fluorite structure solid solutions. The effective ionic radius of Y3+ in eightfold coordination was estimated to be 0.1011 nm by using the measured lattice parameters and the empirical equations to predict the lattice parameters of the fluorite-type solid solutions.  相似文献   

15.
Phase equilibria in the system ZrO2─InO1.5 have been investigated in the temperature range from 800° to 1700°C Up to 4 mol%, InO1.5 is soluble in t -ZrO2 at 1500°C. The martensitic transformation temperature m → t of ZrO2 containing InO1.5 is compared with that of ZrO2 solid solutions with various other trivalent ions with different ionic radii. The diffusionless c → t ' A phase transformation is discussed. Extended solid solubility from 12.4 ± 0.8 to 56.5 ± 3 mol% InO1.5 is found at 1700°C in the cubic ZrO2 phase. The eutectoid composition and temperature for the decomposition of c -ZrO2 solid solution into t -ZrO2+InO1.5 solid solutions were determined. A maximum of about 1 mol% ZrO2 is soluble in bcc InO1.5 phase. Metastable supersaturation of ZrO2 in bcc InO 1.5 and conditions for phase separation are discussed.  相似文献   

16.
The subsolidus phase relations in the entire system ZrO2-Y2O3 were established using DTA, expansion measurements, and room- and high-temperature X-ray diffraction. Three eutectoid reactions were found in the system: ( a ) tetragonal zirconia solid solution→monoclinic zirconia solid solution+cubic zirconia solid solution at 4.5 mol% Y2O3 and ∼490°C, ( b ) cubic zirconia solid solutiow→δ-phase Y4Zr3O12+hexagonalphase Y6ZrO11 at 45 mol% Y2O3 and ∼1325°±25°C, and ( c ) yttria C -type solid solution→wcubic zirconia solid solution+ hexagonal phase Y6ZrO11 at ∼72 mol% Y2O3 and 1650°±50°C. Two ordered phases were also found in the system, one at 40 mol% Y2O3 with ideal formula Y4Zr3O12, and another, a new hexagonal phase, at 75 mol% Y2O3 with formula Y6ZrO11. They decompose at 1375° and >1750°C into cubic zirconia solid solution and yttria C -type solid solution, respectively. The extent of the cubic zirconia and yttria C -type solid solution fields was also redetermined. By incorporating the known tetragonal-cubic zirconia transition temperature and the liquidus temperatures in the system, a new tentative phase diagram is given for the system ZrO2-Y2O3.  相似文献   

17.
Simulataneous additions of SrO and Al2O3 to ZrO2 (12 mol% CeO2) lead to the in situ formation of strontium aluminate (SrO · 6Al2O3) platelets (∼0.5 μm in width and 5 to 10 μm in length) within the Ce-TZP matrix. These platelet-containing Ce-TZP ceramics have the strength (500 to 700 MPa) and hardness (13 to 14 GPa) of Ce-TZP/Al2O3 while maintaining the high toughness (14 to 15 MPa ± m1/2) of Ce-TZP. Optimum room-temperature properties are obtained at SrO/Al2O3 molar ratios between 0.025 and 0.1 for ZrO2 (12 mol% CeO2) with starting Al2O3 contents ranging between 15 and 60 vol%. The role of various toughening mechanisms is discussed for these composite ceramics.  相似文献   

18.
The phase diagram for the system ZrO2-Y2O3 was redetermined. The extent of the fluorite-type ZrO2-YzO3 solid solution field was determined with a high-temperature X-ray furnace, precise lattice parameter measurements, and a hydrothermal technique. Long range ordering occurred at 40 mol% Y2O3 and the corresponding ordered phase was Zr3Y4OL12. The compound has rhombohedra1 symmetry (space group R 3), is isostructural with UY6Ol2 and decomposes above 1250±50°C. The results indicate that the eutectoid may occur at a temperature <400°C at a composition between 20 and 30 mol% Y2O3 Determination of the liquidus line indicated a eutectic at 83± 1 mol% Y2O3 and a peritectic at 76 ± 1 mol% Y2O3.  相似文献   

19.
Aqueous solutions of zirconium acetate and aluminum nitrate were spray pyrolyzed at 250°C and upquenched to different temperatures to yield metastable solid solutions of composition Zr(1− x )AlxO(2− x /2). An amorphous oxide forms first during pyrolysis which subsequently crystallizes as a single phase for x ≤ 0.57 (≤40 mol% Al2O3). The crystallization temperature increased with Al2O3 content. Electron diffraction, supported by Raman spectroscopy, indicates that the initial phase is tetragonal. At higher temperatures, the initial solid solation partitions to other metastable phases, viz., t -ZrO2+γ-Al2O3, prior to achieving their equilibrium phase assemblage, m -ZrO2+α-Al2O3. Partitioning yields a nanocomposite microstructure with grain sizes of 20–100 nm, compared to the 3 to 5 nm in the initial, single phase. Compositions containing 45 to 50 mol% Al2O3 concurrently crystallize and partition. The structure selected during crystallization and the partitioning phenomena are discussed in terms of diffusional constraints during crystallization, which are conceptually similar to those operating during rapid solidification.  相似文献   

20.
Aqueous processing of Al2O3─ZrO2 (123 mol% CeO2) composites, combined with sintering conditions, was used to control the microstructure and its influence on the martensitic transformation temperature of t -ZrO2 and the transformation-toughening contribution at room temperature. The resultant ZrO2 grain sizes in the dense composites were related to the transformation-toughening behavior of t -ZrO2. The data show that (1) the best processing conditions exist when the electrophoretic mobilities of the two solids are positive, adequately high to ensure colloidal stability, efficient packing,and uniform ZrO2 distribution but differ greatly in magnitude, (2) the colloidal stability of ZrO2 controls the overall stability and the rheological and processing behavior of this mixture, (3) the grain size distribution in dense pieces sintered for 1 h at 1500°C is comparable to the particle size distribution of the powders, (4) the martensite start temperature for the tetragonal to-monoclinic transformation in Al2O3 containing 20 and 40 vol% ZrO2 increases and can approach 0°C with increasing average ZrO2 grain size, and as a result, (5) the fracture toughness values at room temperature are raised from 4–5 MPa.m1/2 to 9–12 MPa.m1/2 for these two compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号