首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As an engineered material, ultra‐high toughness cementitious composite (UHTCC) exhibits the characteristics of pseudo strain hardening and multiple cracking under uniaxial tension. It can be applied as the reinforcing and protective material of concrete structures. In this paper, static and fatigue flexural tests were carried out on UHTCC‐layered concrete composite beams, for which UHTCC layer was used on the tension side. Under both static and fatigue loads, plane section assumption was suitable for such composite beams, and a good bond strength was achieved between the two layers. For static specimens, the UHTCC layer enhanced the ductility of the concrete layer. While under cyclic loads, because of the reinforcing effect of UHTCC, more than one crack were formed in the concrete layer, which led to a ductile deformation. Furthermore, the fatigue damage process of the composite beam was analysed.  相似文献   

2.
《Composites Part B》2001,32(4):299-308
An experimental investigation has been carried out to estimate the static and fatigue behaviour of specimens made up of steel plates and sandwich composite panels joined together by either blind or mechanical lock fasteners.A preliminary study was carried out in order to analyse the drilling operation of sandwich panels to determine the best values of parameters to use for fastener installation.A first set of pull-out and shear static tests was performed in 1992, using sandwich panels composed of a nomex honeycomb core between two laminates of glass/graphite/kevlar fibres in epoxy matrix.The investigation was completed in 1998. It consisted of performing a set of pull-out and shear fatigue tests on joints with blind fasteners, and of performing a new set of static tests on identical specimens with the same loading conditions as in 1992 so as to evaluate the possible ageing effect on mechanical proprieties of sandwich panels tested.  相似文献   

3.
The paper presents the results of an experimental and numerical study on the fatigue behaviour of cruciform load carrying joints made from the duplex stainless steel and failing from the weld root through the weld metal. Fatigue crack growth (FCG) data, obtained in specimens of the weld metal, are presented, as well as threshold data, both obtained for R= 0 and 0.5. The influence of stress ratio is discussed, and the FCGR results are compared with data for low carbon structural steels. S–N data were obtained in the joints, both for R= 0.05 and 0.5, and the fatigue cracking mechanisms were analysed in detail with the SEM. It was found that the cracks propagated very early in the lifetime of the joints, under mixed mode conditions (I + II), but the mode I component was found to be predominant over mode II. The geometries of the cracks were defined in detail from measurements taken in the fracture surfaces. A 2D FE analysis was carried out for the mixed mode inclined cracks obtained at the weld root, and the J‐integral formulations were obtained as a function of crack length and crack propagation angle. The values of the crack propagation angle, θi, were obtained for the Jmax conditions, and it was found that, in the fatigue tests, the cracks propagated in directions very close to the predicted directions of maximum J. KI and KII formulations were obtained, and the KI data were compared with the formulations given in the PD6493 (BS7910) document, and some differences were found. A more general formulation for K under mixed mode conditions was derived. The derived K solutions were applied to predict the fatigue lives of the joints under crack propagation, and an extremely good agreement was found with the experimental results obtained in the fatigue tests.  相似文献   

4.
This study entails the fatigue analysis of a complex plate-like structure subjected to random loading. The stress and fatigue life assessment is performed by means of experimental strain gauge measurements, finite element analysis and a quasi-static fatigue assessment procedure known as the fatigue equivalent static load (FESL) methodology. Firstly, the integrity of shell elements for accurately capturing the stiffness properties and stress distribution in the vicinity of welds is investigated. Furthermore, the stress response of the structure to random dynamic loading is investigated and validated in terms of its suitability for assessment by the FESL methodology. Nominal stress and hot-spot stress fatigue life predictions are made, based on measurements as well as the FESL procedure. The viability and integrity of the FESL methodology is critically assessed after which the actual fatigue life of the structure under particular loading conditions is determined for comparison.  相似文献   

5.
The present study aims at explaining the synergistic effect of environmental media and stress/strain on fatigue lives of aluminium alloys. Rotating bending fatigue tests were carried out using four different aluminium alloys LY12‐CZ, 2024‐T4, 7475‐T7351 and 7075‐T651, at air state, 3.5% and 5.0% NaCl aqueous solutions. These results indicated that synergistic actions of the environmental media and cyclic loading accelerated the fatigue crack propagation of aluminium alloys. Furthermore, various influence factors (such as solution concentration, cyclic numbers, high (low) strength aluminium alloys etc.) of the fatigue life at synergistic actions of the environmental media and stress were quantificationally discussed in this paper.  相似文献   

6.
Damage progression and failure characteristics of open‐hole flax fibre aluminium laminate (flax‐FML) specimens subjected to quasi‐static tensile or tension‐tension fatigue loading were experimentally investigated. Notched and unnotched flax‐FML composites exhibited brittle fracture with little or no fibre pull‐out and minimal delamination at the aluminium/adhesive interface. The flax‐FMLs were tested to failure under tension‐tension fatigue loading conditions (R ratio of 0.1; frequency of 10 Hz; applied fatigue stresses ranging between 30% and 80% of the respective ultimate tensile strength values). The fatigue cycles to failure decreased with the increase in the applied fatigue stress and hole diameter. A phenomenological modelling technique was developed to evaluate the fatigue life of an open‐hole flax‐FML composite. Fatigue tests on specimens subjected to a maximum load equivalent to 35% of the respective tensile failure strength were interrupted at around 85% of the corresponding fatigue life. The accumulated fatigue damage in these specimens was characterised using X‐ray computed tomography. For benchmarking purposes, the fatigue performance and related damage progression in the flax‐FML composite were compared with those of the glass‐FMLs.  相似文献   

7.
以PVC泡沫或Balsa轻木为芯材的玻璃纤维增强树脂基复合材料(GRP)夹芯板目前广泛应用于船舶与海洋工程结构中。论文设计不同参数的GRP夹芯板-钢板混合接头模型,进行四点弯曲加载下的静力及疲劳试验研究,同时运用ABAQUS软件结合MSC.fatigue软件对接头的静态及疲劳弯曲失效进行数值模拟,分析了接头的弯曲强度、刚度和失效模式,并研究了接头填充区材料及长度、钢板嵌入填充区长度等参数对接头弯曲性能的影响。结果表明:弯曲载荷作用下接头破坏发生在连接结合部,失效模式则因填充区的不同设计而不同;对提高接头的弯曲性能较为明显的设计参数包括将钢板延伸到接头填充区或者选择Balsa轻木替代PVC泡沫芯材;对于受到疲劳弯曲载荷的接头模型,在较大疲劳载荷水平下,所有试件在未达到106次循环时均发生了疲劳破坏;而在相对较小的疲劳载荷水平下,经过106次循环后所有试件全部完好,并且接头的剩余强度与疲劳试验前的静强度相近,表明小载荷水平下接头的疲劳次数对其承载能力无影响。  相似文献   

8.
Fastener load-transferred experiments and fatigue tests of the scarfed lap riveted joints with different lap angle were carried out. The fracture surfaces were observed by optical microscope (OM) in this paper. Both experimental and computational studies were described and compared when possible. Based on the qualitative finite element analysis (FEA), the multi-axial fatigue life of the scarfed lap riveted joints has been predicted by Smith–Watson–Topper (SWT) method and Wang–Brown (WB) method respectively. Both of the test results and predicted results show that fatigue life of scarfed lap riveted joints is remarkably increased after introducing lap angle into the faying surface. 8 mm-thick specimens with the lap angle of 1.68 °C exhibit the best fatigue performance, and 20 mm-thick with the lap angle of 3.37 °C do in the present study. Compared with the result of WB theory, the result of SWT theory is more conservative and reliable. For structures’ reliability designs, SWT theory and WB theory are all fallibility.  相似文献   

9.
In this paper, an experimental investigation on effect and mechanism of in-plane constraint induced by crack depth on local fracture resistance of two cracks (A508 heat-affected-zone (HAZ) crack and A508/Alloy52Mb interface crack) located at the weakest region in an Alloy52M dissimilar metal welded joint (DMWJ) between A508 ferritic steel and 316L stainless steel in nuclear power plants has been carried out. The results show that the local fracture resistance of the two cracks is sensitive to in-plane constraint. With increasing in-plane constraint (crack depth a/W), the fracture mechanism of the two cracks changes from ductile fracture through mixed ductile and brittle fracture to brittle fracture, and the corresponding crack growth resistance decreases. The crack growth path in the specimens with different in-plane constraints deviates to low-strength material side, and is mainly controlled by local strength mismatch, rather than toughness mismatch. For accurate and reliable safety design and failure assessment of the DMWJ structures, it needs to consider the effects of in-plane constraint on fracture mechanism and local fracture resistance. The new safety design and failure assessment methods incorporating constraint effect need to be developed for the DMWJ structures.  相似文献   

10.
In this experimental study, the impact behavior of hybrid composite plates has been investigated. The increasing impact energy was performed on two types of hybrid composite plates (glass–carbon/epoxy) until complete perforation of specimens. An energy profiling method, showing the relationship between impact energy and absorbed energy, was used together with load–deflection curves to determine the penetration and perforation thresholds of hybrid composites. The failure processes of damaged specimens for different impact energies were evaluated by comparing load–deflection curves and images of damaged samples taken from impacted sides and non-impacted sides. Cross-sections of damaged specimens were also inspected visually and discussed to assess the extent of damage, such as fiber fracture in layers, expansion of delaminations between adjacent layers. The perforation threshold of hybrid composite impacted from surface with carbon fibers was found approximately 30% higher than that of surface with glass fibers.  相似文献   

11.
12.
Thick specimens of [0]32 SiC/Ti-15-3 were cycled under a variety of loading conditions. Specimens were fatigued in strain- and load-controlled modes at both R = 0 (zero-tension) and R = −1 (fully reversed) loading ratios. In addition, a hybrid strain-controlled mode at R = 0 was used to simulate the true strain-controlled behaviour. The strain-controlled specimens had longer lives compared with the load-controlled specimens when cycled at an R-ratio of zero. Under fully reversed loading, there was no difference between the strain- and load-controlled modes. The hybrid strain-controlled data were found to approximate the load-controlled data better, rather than the true strain-controlled situation. Damage occurred through transverse fibre cracks for R = 0 loading for both the load- and strain-controlled modes. However, fully reversed loading caused matrix cracking to be the operative damage mechanism.  相似文献   

13.
Fatigue cracked and fast fractured regions in four-point bend specimens prepared from 25 wt% silicon carbide whisker reinforced alumina composite were examined by scanning electron microscopy. This composite was found to be susceptible to a fatigue crack growth phenomenon similar to that in the case of metallic materials, but with a higher crack growth exponent. In the fatigue region, the alumina matrix failed mainly in a transgranular mode and the whiskers mainly failed with a flat fracture surface but without their pullout. On the other hand, in the fast fracture region, the whiskers failed predominantly by pullout and the alumina matrix failed in a mixed mode with about half in transgranular and the other half in intergranular mode. Thus, to improve the fracture toughness of the material, the grain boundary strength of alumina and the matrix whisker interfacial bonding should be improved. To increase the resistance to fatigue, the fracture strength of the alumina grains should be improved by using finer α-alumina particles and the fatigue strength of the whisker have to be increased by improving the uniformity in distribution of β-SiC whiskers during hot pressing.  相似文献   

14.
In this work laser‐welded tube‐tube specimens made of aluminium alloys AlMg3.5Mn and AlSi1MgMn T6 were experimentally tested under constant and variable amplitude loading, under pure axial and pure torsion loading. In order to evaluate the influence on fatigue behaviour of the residual stresses, because of the welding process, some specimens were subjected to postweld heat treatment and then were tested. The numerical analyses, using finite element (FE), were carried out to obtain a reliable estimation of the residual stress in the specimen. The numerical results were in a good agreement with experimental ones obtained by means of hole‐drilling method. Finally, the residual stress distribution was superimposed to stress distribution because of fatigue loads obtained by FE analyses applying local concept, to calculate the stresses in the crack initiation zone and to understand the different types of failure that occurred in as‐welded and relieved specimens.  相似文献   

15.
利用真空袋压工艺, 采用单向炭纤维复合材料补片对中心裂纹铝合金板进行了单面胶接修补。测试了复合材料修补板的静态拉伸强度及修补板在拉拉疲劳过程中的裂纹扩展、界面脱粘和剩余拉伸强度等疲劳性能。结果表明, 复合材料补片胶接修补能有效地提高裂纹板的破坏强度和刚度, 降低裂纹板的疲劳裂纹扩展速率, 提高其疲劳寿命。裂纹板经单向炭纤维/ 环氧复合材料补片修补后, 其破坏强度从311. 48 MPa 提高到364. 74 MPa ,疲劳寿命从32217 次提高到77546 次。疲劳导致修补结构的粘接界面脱粘, 脱粘区域近似椭圆形; 脱粘面积随疲劳周次的增加而增加, 且增加的幅度与疲劳周次相关。   相似文献   

16.
Fatigue crack initiation and propagation behaviours were studied based on the dynamic response simulation by the three‐dimensional finite‐element analysis (FEA) and dynamic response experiments for tensile‐shear spot‐welded joints. The entire fatigue propagation behaviour from the surface elliptical cracks at the initiation stage to the through thickness cracks at the final stage was taken into consideration during the three‐dimensional FEA dynamic response simulations. The results of the simulations and experiments found that the fatigue cracks of spot‐welded joint from initial detectable crack sizes to crack propagation behaviour could be described by three stages. Approximately one‐half of the total fatigue life was taken in stage I, which includes micro‐crack nucleation and the small crack growth process; 20% of the total fatigue life in stage II, in which the existing surface crack propagates through the thickness of sheet and 30% of the total fatigue life in stage III, during which the through thickness crack propagates along the direction of plate width to the final failure. According to the relationship between the crack length and depth and the dynamic response frequency during the simulated fatigue damage process, the definition of fatigue crack initiation and propagation stages was proposed. The analysis will provide some information for the fatigue life prediction of the spot‐welded structures.  相似文献   

17.
In this work, a smart curing method for the co-cured aluminum/composite hybrid shaft which can reduce the thermal residual stresses generated during co-curing bonding operation between the composite layer and the aluminum tube was applied. In order to reduce the thermal residual stresses generated during co-cure bonding stages due to the difference of coefficients of thermal expansions (CTE) of the composite and the aluminum tube, a smart cure cycle composed of cooling and reheating cycles was applied. The heating and cooling operations were realized using a pan type heater and water cooling system. The thermo-mechanical properties of the high modulus carbon epoxy composite were measured by a DSC (differential scanning calorimetry) and rheometer to obtain an optimal time to apply the cooling operation. Curvature experiment of the co-cure bonded steel/composite strip was performed to investigate the effect of cure cycle on generation of the thermal residual stress. Also, the thermal residual stresses of the aluminum/composite hybrid shaft were measured using strain gauges with respect to cure cycles.

Finally, torsional fatigue test and vibration test of the aluminum/composite hybrid shaft were performed, and it has been found that this method might be used effectively in manufacturing of the co-cured aluminum/composite hybrid propeller shaft to improve the dynamic torque characteristics.  相似文献   


18.
This paper investigates the possibility of unifying different criteria concerned with the fatigue strength of welded joints. In particular, it compares estimates based on local stress fields due to geometry (evaluated without any crack-like defect) and residual life predictions in the presence of a crack, according to LEFM. Fatigue strength results already reported in the literature for transverse non-load-carrying fillet welds are used as an experimental database. Nominal stress ranges were largely scattered, due to large variations of joint geometrical parameters. The scatter band greatly reduces as soon as a 0.3-mm virtual crack is introduced at the weld toe, and the behaviour of the joints is given in terms of Δ K I versus total life fatigue. Such calculations, not different from residual life predictions, are easily performed by using the local stress distributions determined near the weld toes in the absence of crack-like defects. More precisely, the analytical expressions for K I are based on a simple combination of the notch stress intensity factors K 1N and K 2N for opening and sliding modes. Then, fatigue strength predictions, as accurate as those based on fracture mechanics, are performed by the local stress analysis in a simpler way.  相似文献   

19.
Osman Asi   《Composite Structures》2010,92(2):354-363
An experimental study has been carried out to investigate the bearing strength behavior of pinned joints of glass fiber reinforced composite filled with different proportions of Al2O3 particles, as a function of filler loading and joint geometry. The weight fractions of the filler in the matrix were 7.5, 10, and 15%. Single-hole pin-loaded specimens of each composite material were tested in tension. The results show that the bearing strength of glass fiber reinforced epoxy composites pinned joints is associated with the filler content and geometric parameters. The increase of the Al2O3 particle loading in the matrix improved the bearing strength of the composites. The highest bearing strengths were obtained for composite specimens with 10 wt.% Al2O3 particle content. Further increases in the Al2O3 particle content in the matrix resulted in a decrease of the bearing strength, but remains above that of the unfilled glass reinforced epoxy composites.  相似文献   

20.
The estimation of load interaction effects is essential for residual lifetime calculations of components with cracks. Whereas overloads are widely investigated, there is still no consensus about the effects and mechanisms of underloads. For this reason, load sequences containing underloads are experimentally examined within this paper. Because Kmax and R are not appropriate for describing the cyclic crack tip loading at tension/compression loading, the σtip concept is used to quantify the crack driving force at compressive loads. Among others, the tests also include load sequences that have not been reported in the literature yet like underloads that are applied at a certain distance after an overload. The influence of underloads on crack arrest is also investigated. The experimental tests are performed with the tool steel AISI/SAE 1045.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号