首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
报道了一种利用复合腔进行腔内和频的589nm激光器.激光器由两个子谐振腔组成.在两个子谐振腔中,分别利用两个激光二极管(LD)抽运Nd∶YAG晶体和Nd∶YVO4晶体,并分别选择1319 nm波长(对应Nd∶YAG晶体的4F3/2→4I13/2跃迁)与1064 nm波长(对应Nd∶YVO4晶体的4F3/2→4I11/2跃迁)振荡进行和频.通过谐振腔的优化设计,实现了腔内两个波长较好的模式与增益匹配.在两个子腔的交叠部分,利用BiB3O6(BIBO)晶体Ⅰ类临界相位匹配进行腔内和频,得到和频激光输出.当Nd∶YAG与Nd∶YVO4晶体上抽运功率分别为750 mW和600 mW时,获得了24 mW,589 nm黄橙激光输出.该输出激光光束质量好、噪声低.  相似文献   

2.
报道了一种激光二极管抽运Nd:YVO4晶体、腔内Ⅰ类临界相位匹配LBO和频、连续波输出的全固态橙黄色激光器的设计和实验结果。橙黄色激光由Nd:YVO4晶体的1064nm和1342nm谱线腔内和频产生,输出波长为593.5nm。实验采用了双镜谐振腔结构,在1.6W的808nm注入抽运功率下,获得了最高功率为84mW连续波TEM00的橙黄色低噪声激光输出,光-光转换效率为5.3%,光束质量因子M21.2。实验和分析表明,采用激光二极管抽运Nd:YVO4晶体、LBOⅠ类临界相位匹配腔内和频是获得橙黄色激光的实用方法,并可以应用到Nd:YVO4晶体的其它谱线或具有多条谱线的其它激光增益介质,获得更多不同颜色的单谱线激光输出。  相似文献   

3.
郑耀辉  王雅君  彭堃墀 《中国激光》2012,39(6):602011-51
采用中心波长为888nm的激光二极管作为抽运源,减轻了Nd:YVO4晶体中的热效应。通过合理的谐振腔设计,扩大激光晶体处的基模尺寸和振荡光在凹面腔镜处的入射角,减轻了激光晶体内部的热效应和谐振腔像散,提高了激光器的输出功率。采用四镜环形腔选模的办法,获得稳定的高功率单频激光输出。在吸收的抽运功率为67.5W时,实现了最高功率为21.5W的532nm单频激光输出,其8h功率稳定性优于±1%,光束质量M2<1.1,光-光转换效率为31.9%。  相似文献   

4.
报道了一种激光二极管抽运Nd∶YVO4晶体、腔内Ⅰ类临界相位匹配LBO和频、连续波输出的全固态橙黄色激光器的设计和实验结果。橙黄色激光由Nd∶YVO4晶体的1064nm和1342nm谱线腔内和频产生,输出波长为593.5nm。实验采用了双镜谐振腔结构,在1.6W的808nm注入抽运功率下,获得了最高功率为84mW连续波TEM00的橙黄色低噪声激光输出,光-光转换效率为5.3%,光束质量因子M2<1.2。实验和分析表明,采用激光二极管抽运Nd∶YVO4晶体、LBOⅠ类临界相位匹配腔内和频是获得橙黄色激光的实用方法,并可以应用到Nd∶YVO4晶体的其它谱线或具有多条谱线的其它激光增益介质,获得更多不同颜色的单谱线激光输出。  相似文献   

5.
激光二极管抽运全固态355 nm连续波紫外激光器   总被引:1,自引:1,他引:1  
通过优化设计激光谐振腔,实现了激光二极管(LD)抽运腔内三次谐波转换355 nm紫外激光器的高效率输出.实验中采用复合腔结构,利用BIBOⅠ类临界相位匹配进行腔内和频,当注入到Nd∶YAG和Nd∶YVO4晶体的抽运功率分别为20 W和8 W时,获得最大功率为114 mW的TEM00连续波355 nm的紫外激光输出,光-光转换效率为0.4%,4 h功率稳定度优于±3.2%.  相似文献   

6.
全固态复合式内腔和频500.8 nm连续波青光激光器   总被引:2,自引:2,他引:0  
报道了一台全固态连续波500.8 nm青光激光器.实验中采用复合式谐振腔结构,用两个激光二极管阵列(LDA)经过光纤耦合分别单独端面抽运两块Nd:YAG晶体,青色激光由两块Nd:YAG品体的1064 nm和946 nm谱线非线性和频产生.在两个子谐振腔的交叠区域利用LBO Ⅰ类临界相位匹配进行腔内和频,通过谐振腔优化设计,实现了腔内两个波长较好的模式与增益匹配.当注人到两块Nd:YAG晶体的抽运功率分别为12 W和8 W时,获得223 mW的TEM00模连续波500.8 nm青色激光输出,水平和乖直方向的光束质量M2因子约为1.2.实验结果表明,采用复合式腔结构和频是获取高功率500.8 nm青色激光输出的有效方法.  相似文献   

7.
介绍了一种光纤耦合激光二极管阵列(LDA)同时泵浦Nd:YAG和Nd:YVO4晶体输出554.8nm连续波的全固态黄-绿光激光器。黄-绿激光是由Nd:YAG晶体的946nm激光和Nd:YVO4晶体的1342nm激光非线性和频产生,两条谱线在各自晶体的对应能级跃迁分别为4F3/2-4I9/2和4F3/2-4I13/2。实验中采用复合腔结构,利用KTP晶体II类临界相位匹配进行腔内和频,当注入到Nd:YAG和Nd:YVO4晶体的泵浦功率分别为30W和20W时,获得了1.13W的连续波554.8nm黄-绿激光输出,光束质量因子M2<1.22,这是目前为止该波长已见报道的最高功率输出值。实验结果表明:采用Nd∶YAG和Nd∶YVO4两种激光晶体进行腔内和频是获得黄-绿激光的高效方法,并可以应用到其他两种激光晶体进行腔内非线性和频,获得更多不同波长的激光输出。  相似文献   

8.
LD泵浦Nd:YVO4全固态RTP Ⅱ类匹配543 nm激光器   总被引:2,自引:2,他引:0  
报道了LD泵浦Nd:YVO4晶体连续输出的全固态腔内倍频543 nm激光器.采用三镜折叠腔结构,用功率为20 W的LD抽运掺杂浓度为0.2%的Nd:YVO4晶体,产生1 085 nm腔内振荡基频波,其谱线在Nd:YVO4晶体内的对应能级跃迁为4F3/2-4I11/2.采用长度为10mm的Ⅱ类临界相位匹配RTP晶体进行腔内倍频,获得了543 nm激光输出.在20 W的抽运功率下,最大输出功率为2.13 W,光束质量因子M2=1.22,光一光转换效率达到了10.65%,输出功率在30 min内稳定度优于3%.实验结果表明:采用Nd:YVO4激光晶体进行腔内倍频是获得该543 nm波长激光的高效方法.  相似文献   

9.
激光二极管抽运Nd:YVO4/YVO4复合晶体激光器   总被引:1,自引:3,他引:1  
在高功率激光二极管(LD)抽运的情况下,对比分析了Nd∶YVO4/YVO4复合晶体和Nd∶YVO4单一晶体的激光特性.实验证明,复合晶体能够有效地降低晶体内的温度梯度,减小由端面变形带来的热透镜效应,获得比单一晶体高出许多的输出功率.采用Z型折叠腔,研究了Nd∶YVO4/YVO4复合晶体KTP倍频特性,当抽运功率为17 W时,获得了6.23 W的绿光输出,抽运光到绿光的转换效率高达37%.  相似文献   

10.
描述了一种可调谐全固态Nd:YVO4/LBO倍频连续671nm环形激光器的结构参数和相关实验研究。激光器采用四镜环形腔结构,利用880nm激光二极管(LD)端面抽运YVO4-Nd:YVO4复合晶体和Ⅰ类相位匹配的LBO倍频方式,加入TGG旋光器和λ/2波片组成的光学单向器实现单向运转,通过对法布里-珀罗(F-P)标准具角度和腔镜压电晶体电压的调节实现了激光输出波长671nm附近的调频。在抽运功率为23W,吸收抽运功率为14.5W时,输出单频671nm连续红光最高功率为1.08W,光-光转换效率为7.4%;加标准具调谐时,获得了最高功率为738mW的可调谐红光输出。  相似文献   

11.
在高功率激光二极管(LD)抽运的情况下,对比分析了Nd∶YVO4/YVO4复合晶体和Nd∶YVO4单一晶体的激光特性。实验证明,复合晶体能够有效地降低晶体内的温度梯度,减小由端面变形带来的热透镜效应,获得比单一晶体高出许多的输出功率。采用Z型折叠腔,研究了Nd∶YVO4/YVO4复合晶体KTP倍频特性,当抽运功率为17W时,获得了6.23W的绿光输出,抽运光到绿光的转换效率高达37%。  相似文献   

12.
为了提高半导体激光器抽运的全固态激光器的输出功率与光-光转换效率,设计并使用了双端抽运双Nd:YVO4绿光激光器。通过激光晶体温度场特性的研究以及依据光束的传输矩阵,分析了双激光晶体热透镜效应对于谐振腔稳定性的影响,设计了双端抽运双激光晶体折叠腔。在双端抽运双Nd:YVO4绿光激光器系统中,LBO晶体采用了Ⅰ类非临界相位匹配腔内倍频方式,当抽运光功率为26.56W时,获得了5.5 W的稳定连续绿光输出,其光-光转换效率为20.7%。结果同时表明,在谐振腔内插入双激光增益介质,不仅可以提高激光器的光-光转换效率,而且两个激光晶体热透镜效应相互作用的结果可以增强谐振腔的稳定性。  相似文献   

13.
全固态高输出功率单频Nd:YVO4/KTP激光器   总被引:1,自引:2,他引:1  
利用光纤耦合输出的半导体激光器(LD)端面抽运Nd∶YVO4晶体,激光谐振腔采用四镜环形腔结构,通过KTP晶体内腔倍频,获得了高功率全固态连续单频绿光激光输出。根据临界相位匹配下椭圆高斯光束的倍频理论,通过旋转Nd∶YVO4晶体的方向选取合适的基频光偏振方向,使KTP晶体的走离角所在平面与谐振腔弧矢面平行,可提高内腔倍频转换效率。当抽运功率为20 W时,激光器最大单频绿光输出功率达4.8 W。作为对比,控制基频光偏振方向使KTP晶体的走离角所在平面与谐振腔子午面平行时,激光器最大单频绿光输出功率为4.1 W。对比两种情形下的实验结果,激光器的光-光转换效率从21.8%提高到25.5%。  相似文献   

14.
瓦级546.3nm全固态腔内和频激光器   总被引:1,自引:1,他引:0  
为了获得瓦(W)级546 nm波段的连续激光输出 ,采用高功率激光二极管(LD)端面泵浦Nd:YAG激光晶体,通过谐振腔反射镜膜系的特殊设计,在单通道双共振腔 内获得Nd:YAG激光器的1073.8nm和1112.1nm两条谱线同时运转,并通过在腔内插入非线 性 光学晶体三硼酸锂(LBO)进行腔内和频,获得546.3nm绿光连续输 出。当抽运光功 率为24W时,输出的546.3nm绿光功率高达1.58W,其光-光转换效 率为6.6%。调节LBO 方位角,还可以分别获得1073.8nm和1112.1nm的倍频光537nm和556nm输出。  相似文献   

15.
3.6W全固态腔内和频Nd∶YVO4橙黄激光器   总被引:1,自引:1,他引:0  
报道了一种采用光纤耦合激光二极管阵列(LDA)端面泵浦Nd∶YVO4激光晶体、Ⅰ类临界位相匹配BiB3O6(BiBO)腔内和频实现全固态连续橙黄色激光输出的实验结果。波长为593.5 nm的橙黄色激光是由Nd∶YVO4晶体1064 nm和1342 nm双波长非线性和频产生的。当泵浦功率为27.5 W时,得到橙黄色激光最大输出功率3.6 W,光-光转换效率高达13.2%,据我们所知,这是目前利用腔内和频Nd∶YVO4激光器获得593.5 nm橙黄色激光输出的最高效率。  相似文献   

16.
LD抽运Nd:YVO4/LBO 543 nm全固态激光器   总被引:1,自引:0,他引:1  
报道了一种能获得543 nm激光连续输出的LD抽运全固态激光器,通过对谐振腔膜系的设计以及倍频品体的合理选掸和放置,采用长度为10 mm的Ⅰ类临界相位匹配LBO晶体进行腔内倍频,用功率为2 W的LD抽运掺杂原子数分数为0.8%的Nd:YVO4晶体,采用简单直腔结构,获得了543 nm激光输出.在1.9 W的抽运功率下,最大输出功率为105 mW.光一光转换效率高达5.53%,输出功率在3 h内长期稳定性优于3%.  相似文献   

17.
报道了一种光纤耦合激光二极管阵列(LDA)抽运Nd:YAG晶体、腔内I类临界相位匹配LBO和频、连续波输出的全固态589nm激光器的设计和实验结果。黄光激光是由Nd:YAG 晶体的1064nm和1319nm谱线腔内和频产生,其对应能级跃迁分别为4F3/2到4I11/2和4F3/2 到4I13/2。实验采用三镜腔结构,在808nm 12W的抽运功率下,获得了最高功率为384mW连续波TEM00的589nm黄光激光输出,光束质量因子M2<1.2,4h功率不稳定度小于±2%。实验结果表明采用三镜腔进行腔内和频是获得589nm黄光激光的有效方法,并可以应用到 Nd:YAG晶体的其它谱线或具有多条谱线的其它激光增益介质,获得更多不同波长激光输出。  相似文献   

18.
LD抽运Nd:YVO4连续3波长激光器   总被引:1,自引:0,他引:1  
报道了一种利用激光二极管(LD)端面抽运Nd:YVO4激光晶体,通过硼酸铋(BIBO)晶体的腔内和频(SFM)与倍频(SHG),实现3个二次谐波连续激光同时输出的3波长激光器.利用Nd:YVO4晶体的两条发射谱线(分别为1064 nm和1084 nm)作为基频光,并选掸长度为1.5 mm,Ⅰ类临界相位匹配方式切割(对于1064 nm倍频)的BIBO作为非线性晶体,通过调节BIBO晶体对3个非线性过程(1064 nm倍频,1084 nm倍频及1064 nm与1084 nm和频)的相位因子,即非线性过程的转换效率,使激光器同时获得了两个倍频光和一个和频光,即3个波长:532 nm,537 nm和542 nm激光输出.实验结果表明当两个基频光波长相差较小时,采用相位允许角小的非线性晶体同时进行腔内和频与倍频是获得多波长固体激光器的一种实用方法.  相似文献   

19.
为了获得高功率全固态355nm紫外激光器,采用平平腔结构,通过LD双端抽运Nd:YVO4晶体,在声光Q开关调制作用下产生1064nm脉冲基频光,利用两块LBO晶体分别进行腔内倍频、和频产生355nm紫外激光。在LD抽运功率54W、调制频率40kHz的条件下,获得紫外的最高输出功率为6.67W,脉冲宽度为20ns, M2=1.1。结果表明,腔内和频可得到高效率、高光束质量的紫外激光输出。  相似文献   

20.
激光二极管阵列抽运Nd:YAG腔内双波长运转589 nm和频激光器   总被引:1,自引:4,他引:1  
报道了一种光纤耦合激光二极管阵列(LDA)抽运Nd:YAG晶体、腔内Ⅰ类临界相位匹配LBO和频、连续波输出的全固态589 nm激光器的设计和实验结果.黄激光是由Nd:YAG晶体的1064 nm和1319 nm谱线腔内和频产生的,其对应能级跃迁分别为4F3/2→4I11/2和4F3/2→4I13/2.实验采用三镜折叠腔结构,在808 nm的15 W抽运功率下,获得了最高功率为860 mW连续波TEM00的589 nm黄激光输出,光-光转换效率为5.7%,激光输出功率噪声低,光束质量因子M2<1.2,4 h功率稳定度优于±3.4%.实验结果表明采用三镜折叠腔进行腔内和频是获得589 nm黄激光的有效方法,并可以应用到Nd:YAG晶体的其他谱线或具有多条谱线的其他激光增益介质,获得更多不同波长激光输出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号