首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In the present study, SiC nanoparticles were added to as-cast AZ91 magnesium alloy through friction stir processing (FSP) and an AZ91/SiC surface nanocomposite layer was produced. A relation between the FSP parameters and grain size and hardness of nanocomposite using artificial neural network (ANN) was established. Experimental results showed that distribution of nanoparticles in the stirred zone (SZ) was not uniform and SZ was divided into two regions. In the ANN modeling, the inputs included traverse speed, rotational speed, and region types. Outputs were hardness and grain size. The model can be used to predict hardness and grain size as functions of rotational and traverse speeds and region types. To check the adequacy of the ANN model, the linear regression analyses were carried out to compute the correlation coefficients. The calculated results were in good agreement with experimental data. Additionally, a sensitivity analysis was conducted to determine the parametric impact on the model outputs.  相似文献   

2.
This paper deals with an experimental investigation focused on the effects of water cooling treatment, friction stir processing pass number, and tool rotational direction on the microstructure and mechanical properties of friction stir processed AZ91 magnesium alloy. Specimens were produced using different combinations of process parameters. Parallel to increasing the amount of oxide particles in the processed area, water cooling was found to reduce the final grain size and enhance their hardness and strength. Changing the rotational direction in each pass reduces the grain size severely (from 150 to ~4?μm) and increases the hardness (from 63 to 98?HV) and strength (from ~130 to ~250?MPa). However, no significant difference was found in wear resistance of the specimens produced with different process parameters.  相似文献   

3.
Graphene nanoplatelets (GNPs), despite their unique properties, were not widely investigated as reinforcement in metal matrix nanocomposites. The nanocomposite was fabricated by adding 15-nm-thick GNPs to AZ31 magnesium alloy via friction stir processing (FSP). Mechanical, frictional and wear properties were investigated. It was observed that refined microstructure with a range of 3–9 µm grain size and the presence of GNPs, i.e., reinforcing particles, improved the tensile properties and increased the ultimate tensile strength to 278 MPa. FSP increased the strain-to-fail by 133% compared to that of base metal, while it was decreased by adding GNPs. Moreover, the presence of GNPs decreased the adhesive wear mechanism by squeezing out, smudging on the surface and, finally, forming a protective layer between the sliding surfaces. Hence, the coefficient of friction was decreased to 60% and the range of fluctuations in friction plot was confined by adding GNPs. They were further decreased by increasing the normal load and sliding velocity due to easier debonding of the GNPs and the surrounding AZ31 Mg matrix resulting in forming a lubricating layer between sliding surfaces.  相似文献   

4.

In this paper, the effect of heat treatment and number of passes on microstructure and mechanical properties of friction stir processed AZ91C magnesium alloy samples were investigated. From six samples of as-cast AZ91C magnesium alloy, three plates were pre-heated at temperature of 375°C for 3 hours, and then were treated at temperature of 415°C for 18 hours and finally were cooled down in air. Three plates were relinquished without heat treatment. 8 mm thick as-cast AZ91C magnesium alloy plates were friction stir processed at constant traverse speed of 40 mm/min and tool rotation speed of 1250 rpm. After process, microstructural characterization of samples was analyzed using optical microscopy and tensile and Vickers hardness tests were performed. It was found that heat treated samples had finer grains, higher hardness, improved tensile strength and elongation relative to non-heat treated ones. As the number of passes increased, higher UTS and TE were achieved due to finer grains and more dissolution of β phase (Mg17Al12). The micro-hardness characteristics and tensile improvement of the friction stir processed samples depend significantly on grain size, removal of voids and porosities and dissolution of β phase in the stir zone.

  相似文献   

5.
A series of welds were made by friction stir welding (FSW) under different welding and rotation speeds. A 2D ultimate tensile strength (UTS) map was developed based on various experimental data to predict the UTS of friction stir welded AA2024 alloy joints. The accuracy of the UTS map was evaluated by comparing the estimated UTS with the corresponding experimental results from the FSW of the same material available in the open literature. Analytical models were developed to estimate the peak temperature and grain size in the nugget zone. The predicted optimal peak temperature and welding and rotation speeds for AA2024 were within the windows of 400–465 °C, 175–350 mm/min and 800–1,200 rpm, respectively, under which the joint tensile strength could be higher than 458 MPa (about 94.6 % of the base metal) and the estimated average grain sizes in the nugget zone were about 2–3.9 μm.  相似文献   

6.
研究了搅拌摩擦加工(FSP)次数对AZ91D镁合金组织的影响.结果表明:加工次数对搅拌摩擦区晶粒大小影响不大;但加工次数多可增加搅拌摩擦区组织的面积,并使组织均匀化;使热机械影响区组织向搅拌摩擦区组织发生转变;增大轴肩下压区细晶组织面积,进一步细化轴肩下压区的晶粒.  相似文献   

7.
Possibility of the formation of Al–Al3Ni composite layers on commercial pure aluminium plates by friction stir processing (FSP) has been studied. It is believed that the hot working nature of FSP can effectively promote the exothermic reaction between Al and added Ni powder to produce Al3Ni intermetallic compounds in the aluminium matrix. In this study, the effects of the rotational and traverse speed of the tool as well as the number of FSP passes on the in situ formation of Al3Ni in aluminum matrix were examined. Besides, the microstructure and microhardness of the fabricated surface layers were also studied. The results showed that the ratio of tool rotational speed to traverse speed (ω/υ) is the main controlling parameter of the heat generated during FSP and hence the reaction between aluminium and nickel. Increasing the number of FSP passes also promoted the reaction between Ni and Al and improved the distribution of Al3Ni compounds, too. The composite layer achieved by six passes of FSP showed the highest hardness, which was almost twice of that of the base metal.  相似文献   

8.
采用粉末冶金法制备了AZ91镁合金和SiC颗粒增强的镁基复合材料,SiC的粒度分别为18 μm和8μm,经热压烧结后制得试样.通过扫描电子显微镜观察分析基体和增强体的微观组织形貌,并将制备出的材料分别放入MMW-1型摩擦磨损试验机上,研究SiC的粒度对镁基复合材料摩擦磨损性能的影响.实验结果表明:SiC颗粒的加入能有效...  相似文献   

9.
In the present study, microstructure and mechanical properties of dissimilar weld of structural steel and ferritic stainless steel (FSS) plates of thickness 3 mm were investigated. The plates were butt welded by friction stir welding and defect-free welds were produced at a traverse speed of 20 mm/min and rotational speed of 508 rpm using a tungsten carbide tool. The weld joint consisted of alternate bands of both steels resembling an onion ring pattern. In the weld joint, six distinct regions were found including both the base metals. The stir zone of structural steel revealed refined grain structure of ferrite, pearlite, and martensite whereas in ferritic stainless side, highly refined ferritic grains with grain boundary martensite was observed and also confirmed by x-ray diffraction (XRD). The hardness of the weld joint varies from 186 to 572 HV. This scatter of hardness in stir zone is due to the presence of metal from both sides. The ultimate tensile and yield strengths of the transverse weld specimens was higher than the structural steel base metal whereas lower than the ferritic stainless steel, having fracture from structural steel side.  相似文献   

10.
Welding dissimilar metals by fusion welding is challenging. It results in welding defects. Friction stir welding (FSW) as a solid-state joining method can overcome these problems. In this study, 304L stainless steel was joined to copper by FSW. The optimal values of the welding parameters traverse speed, rotational speed, and tilt angle were obtained through Response surface methodology (RSM). Under optimal welding conditions, the effects of welding pass number on the microstructures and mechanical properties of the welded joints were investigated. Results indicated that appropriate values of FSW parameters could be obtained by RSM and grain size refinement during FSW mainly affected the hardness in the weld regions. Furthermore, the heat from the FSW tool increased the grain size in the Heat-affected zones (HAZs), especially on the copper side. Therefore, the strength and ductility decreased as the welding pass number increased because of grain size enhancement in the HAZs as the welding pass number increased.  相似文献   

11.
This paper studied the combined effects of matrix-to-reinforcement particle size ratio (PSR) and SiC volume fraction on the mechanical properties of extruded Al–SiC composites. A powder metallurgy technique (PM) of cold pressing at 500 MPa followed by hot extrusion at 580 °C was adopted to produce Al/SiC composite. Aluminum powder of size 60 μm and silicon carbide with different sizes, i.e., 50, 20, and 8 μm, were used. Three different volume fractions of SiC were employed, i.e., 5, 10, and 15 %, for each investigated size using a constant extrusion ratio of 14.36. The effect of matrix-to-reinforcement PSR on the reinforcement spatial distribution, fabricability, and resulting mechanical properties of a PM-processed Al/SiC composite were investigated. It has been shown that small ratio between matrix to reinforcement particle size resulted in more uniform distribution of the SiC particles in the matrix. As the PSR increases, the agglomerations and voids increase and the reinforcement particulates seem to have nonuniform distribution. In addition, the agglomerations increased as the volume fraction of the SiC increased. It has also been shown that homogenous distribution of the SiC particles resulted in higher yield strength, ultimate tensile strength, and elongation. Yield strength and ultimate tensile strength of the composite reinforced by PSR (1.2) are higher than those of composite reinforced by PSR (7.5), while the elongation shows opposite trend with yield strength and ultimate tensile strength.  相似文献   

12.
Friction stir welding of AZ61A magnesium alloy   总被引:1,自引:1,他引:0  
This paper deals with the development of an empirical relationship to predict tensile strength of friction stir welded AZ61A magnesium alloy. The process parameters such as tool rotational speed, welding speed, axial force and tool pin profile play a major role in deciding the tensile strength. The response surface method (RSM) was used to develop the empirical relationship. The four-factor, five-level central composite design was used to minimize the number of experimental conditions. The developed empirical relationship can be effectively used to predict tensile strength of friction stir welded AZ61A magnesium alloy joints at 95 % confidence level.  相似文献   

13.
In this research, friction stir processing (FSP) technique is applied for the surface modification of ST14 structural steel. Tungsten carbide tools with cylindrical, conical, square and triangular pin designs are used for surface modification at rotational speed of 400 rpm, normal force of 5 KN and traverse speed of 100 mm min−1. Mechanical and tribological properties of the processed surfaces including microhardness and wear characteristics are studied in detail. Furthermore, microstructural evolutions and worn surfaces are investigated by optical and scanning electron microscopes. Based on the achievements, all designed pins were successfully applicable for low carbon steel to produce defect-free processed material. By the microstructural changes within the stirred zone, the processed specimen is obtained higher mechanical properties. This is due to the formation of fine grains as the consequence of imposing intensive plastic deformation during FSP; however, this issue is highlighted by using square pin design. In this case, minimum grain size of 5 μm and maximum hardness of 320 VHN, as well as, maximum wear resistance are all examined for the specimen modified by square pin.  相似文献   

14.
In the present research work, Friction stir processing (FSP) technique has been applied to develop a C70600 graded copper-nickel (CuNi) Surface metal matrix composite (SMMC) reinforced with and without addition of ZrCp. Rotational and traverse speeds were set as 1200 rpm and 30 mm/min, respectively. The fabricated SMMC were metallurgically characterized by using Optical microscope (OM) and Field emission scanning electron microscope (FESEM). The homogeneous distribution of ZrC particles and good interfacial bonding between matrix/reinforcement were observed via OM and FESEM microscopes. The microhardness of the CuNi/ZrC surface composite was observed by using microhardness tester at the cross section of the sample. The average higher microhardness of 148 Hv at CuNi/ZrC SMMC and lower microhardness of 115 Hv at FSPed CuNi was found. The Ultimate tensile strength (UTS) value was measured by using micro tensile testing machine. The UTS value of CuNi/ZrC composite and FSPed CuNi were observed to be 310 MPa and 302 MPa, respectively. The mode of fracture was also observed via FESEM. The X-ray diffraction (XRD) test was carried out to confirm the presence of CuNi & ZrC in the SMMC layer.  相似文献   

15.
This article investigates the role of friction stir processing (FSP) process parameters on the evolution of microstructure, hardness, intergranular corrosion resistance and wear resistance of aluminium alloy AA5083. The FSP trials are performed by changing the process parameters as per face-centered central composite design. The friction stir processed (FSPed) specimens subjected to intergranular corrosion test and wear test are characterized using field emission scanning electron microscope, energy dispersive x-ray spectroscopy and X-ray diffraction. Outcomes suggest that grain refinement, dispersion and partial dissolution of secondary phase has simultaneously increased the hardness, intergranular corrosion resistance and wear resistance of the FSPed specimens. The study found that tool rotation speed of 700?rpm, tool traverse speed of 60?mm?min?1 and shoulder diameter of 15?mm results in maximum hardness, wear resistance and intergranular corrosion resistance.  相似文献   

16.
Investigations of friction stir welding process using finite element method   总被引:1,自引:1,他引:0  
The aim of this study is to investigate the process of friction stir welding (FSW) by using finite element method (FEM). Currently, the materials that are difficult to be joined with conventional fusion methods can now be easily joined with the method of friction stir welding. In this paper, the welding capability of many different materials with this method has been investigated by using analytical and numeric methods. In this study, a finite element (FE) model was developed for welding process with friction stir welding of AZ31 magnesium alloy. This model was performed by the software of DEFORM 3D finite element in 960, 1,964, and 2,880 rpm rotational speeds and in 10 and 20 mm?min?1 transverse speeds. The temperature values taken from experiments and the temperature values with FEM are compared, and according to these results, it can be stated that the FE model gives reasonable results with experimental results based on temperatures values. Hence, the FE model can be used to predict other parameters of FSW process in future studies.  相似文献   

17.
Friction stir processing (FSP) is an innovative technology, based on friction stir welding (FSW) operative principles, which can be used for changing locally the microstructure and the mechanical properties of conventional materials. In this work, the copper alloy C12200 was friction stir processed using two distinct tools, i.e. a scrolled and a conical shoulder tool, in order to promote different thermomechanical conditions inside the stirred volume, and consequently, varied post-processed microstructures. The influence of the tool geometry and tool rotation and traverse speeds on the microstructural and electrical properties of the processed copper alloy was analysed. The processing conditions were found to have an important influence on the electrical conductivity of the processed material. The differences in electrical conductivity were explained based on dislocations density effects. The effect of the dislocations density on electrical conductivity of the processed material was found to prevail over the effect of the grain boundaries.  相似文献   

18.
Friction stir welding process parameters such as welding speed, rotational speed and tilt angle affect the strength of the weld joint. For maximizing the weld strength, these process parameters must therefore be properly selected and optimized. This study presents an application of Taguchi method to optimize process parameters like welding speed, rotational speed and tilt angle to maximize lap weld tensile-shear strength in 4 mm thick polypropylene composite sheets with 20 wt% carbon fiber. To this end, a L9 orthogonal array of Taguchi method using three factors at three levels was used. Analysis of variance and confirmation tests were conducted. The results indicated that welding speed, rotational speed and tilt angle are respectively the significant parameters affecting the lap weld strength. Optimization results also showed that tensile-shear strength of 6.06 MPa was obtained when welding speed, rotational speed and tilt angle were 25 mm/min, 1250 rpm and 1 degree, respectively.  相似文献   

19.
Friction stir welding has been attempted to evaluate joint strength of lap joint between aluminum sheet (AA6063) and zinc-coated steel (HIF-GA) sheet under different combination of rotational speed and traverse speed. The shear strength decreases significantly when rotational speed increases from 700 to 1,500 rpm at a traverse speed of 30 mm/min. At traverse speed of 50 mm/min, increasing rotational speed from 700 to 1,500 rpm, shear strength remains more or less the same. However, at a traverse speed of 100 mm/min, the shear strength increases significantly with increasing rotational speed from 700 to 1,500 rpm. Essentially, higher fracture load of the lap joint is obtained within a certain range of energy. The results have been correlated with the microstructural characteristics at the bond interface using energy dispersive X-ray spectroscopy, electron probe micro analyzer, and X-ray diffraction. The results show that characteristics of intermetallic compound formed at the interface derived from energy input takes predominating role towards lap joint of Al and coated steel. Furthermore, force and torque responses influenced by the processing parameters can be utilized as weld quality check.  相似文献   

20.
7075 aluminum (Al) alloy as matrix and silicon carbide (SiC) as reinforcement has been identified since it has potential applications in aircraft and space industries because of lower weight to strength ratio, high wear resistance and creep resistance. Thorough investigations about the microstructure and characterization of Al alloy/SiC composite are needed so that metal matrix composites (MMCs) fabricated for aircraft and space industries are defect free and have sound microstructure. Objective of this research work are the fabrication and microstructural investigations of AA7075–SiCp MMCs. 7075 Al alloy is reinforced with 10 and 15 wt.% SiCp of size 20–40 μm by stir casting process. The resulting as-cast composite structures are analyzed using scanning electron microscopy, X-ray diffraction (XRD), differential thermal analysis, and electron probe microscopic analysis (EPMA). SiCp distribution and interaction with 7075 Al alloy matrix is studied. The 7075 Al alloy–SiCp composite microstructure showed excellent SiCp distribution into 7075 Al alloy matrix. In addition to this, no evidence of secondary chemical reactions is observed in XRD and EPMA analysis. Decomposition step in derivative thermogravimetric curve is seen at temperature of 1,257, 1,210, and 1,256 °C for 7075 Al alloy, AA7075/10 wt.%/SiCp (20–40 μm) and AA7075/15 wt.%/SiCp (20–40 μm) composites, respectively. So, these composites can be successfully used for applications where temperature does not exceed beyond 1,250 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号