首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoscale and microscale textures with different geometrical characteristics were fabricated on the surface of the Al2O3/TiC ceramic tool, and molybdenum disulfide (MoS2) solid lubricants were burnished into the textures. The effect of the textures on the cutting performance was investigated using the textured self-lubricated tools and conventional tools in dry cutting tests. The tool wear, cutting force, cutting temperature, friction coefficient, surface roughness and chip topography were measured. Results show that the cutting force, cutting temperature, friction coefficient and tool wear of nanoscale and microscale textured self-lubricated tools are significantly reduced compared with the conventional tool, and the developed tool with wavy microscale textures on the rake face is the most effective in improving the cutting performance. The textured self-lubricated tools increase the surface roughness of machined workpiece, while they can reduce the vibration for a stable cutting and produce more uniform surface quality. The chip topography is changed by the textured self-lubricated tools. As a result, the nanoscale and microscale textured self-lubricated tools effectively improve the cutting performance of conventional Al2O3/TiC ceramic tool, and they are applicable to a stable dry cutting of the hardened steel.  相似文献   

2.
A new type of self-lubricating ceramic cutting tool material with the addition of metal coated solid lubricant powders was developed. Nickel coated CaF2 composite powders with core–shell structure were produced by electroless plating technique. The growth process of nickel coating on the solid lubricant CaF2 powders was analyzed. The as-prepared self-lubricating ceramic cutting tool material made by adding nickel coated CaF2 powders exhibited notable improvements in microstructure and mechanical properties, in comparison with the corresponding cutting tool material made by directly adding uncoated CaF2 powders. Cutting tests show that the new type of self-lubricating ceramic cutting tool has better antifriction property and wear resistance than the corresponding cutting tool.  相似文献   

3.
Micro-holes were made using micro-EDM on the rake and flank face of the cemented carbide (WC/Co) tools. Molybdenum disulfide (MoS2) solid lubricants were filled into the micro-holes to form self-lubricated tools (ML-1 and -2). Dry cutting tests on hardened steel were carried out with these self-lubricated tools and conventional tools (ML-3). The cutting forces, the tool wear, and the friction coefficient between the tool–chip interface were measured. It was shown that the cutting forces with ML-1 and -2 self-lubricated tools were greatly reduced compared with that of ML-3 conventional tool, the ML-1 self-lubricated tool with one micro-hole in its rake face possessed the lower friction coefficient at the tool–chip interface; while the ML-2 self-lubricated tool with one micro-hole in its flank face revealed more flank wear resistance. The mechanism responsible was explained as the formation of a self-lubricating film between the sliding couple, and the composition of this lubricating film was found to be MoS2 solid lubricant, which was released from the micro-hole and smeared on the rake or flank face, and can be acted as lubricating additive during dry cutting processes.  相似文献   

4.
An Al2O3-based composite ceramic tool material reinforced with WC microparticles and TiC nanoparticles was fabricated by using hot-pressing technique. The cutting performance, failure modes and mechanisms of the Al2O3/WC/TiC ceramic tool were investigated via continuous and intermittent turning of hardened AISI 1045 steel in comparison with those of an Al2O3/(W, Ti)C ceramic tool SG-4 and a cemented carbide tool YS8. Worn and fractured surfaces of the cutting tools were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results of continuous turning revealed that tool lifetime of the Al2O3/WC/TiC ceramic tool was higher than that of the SG-4 and YS8 tools at all the tested cutting speeds. As for the intermittent turning, tool life of the Al2O3/WC/TiC ceramic tool was equivalent to that of YS8, but shorter than that of the SG-4 at lower cutting speed (110 m/min). However, tool life of the Al2O3/WC/TiC ceramic tool increased when the cutting speed increased to 170 m/min, becoming much longer than that of the SG-4 and YS8 tools. The longer tool life of the Al2O3/WC/TiC composite ceramic tool was attributed to its synergistic strengthening/toughening mechanisms induced by the WC microparticles and TiC nanoparticles.  相似文献   

5.
This paper concerns the fundamental cutting characteristics obtained in the turning of the pearlitic–ferritic nodular iron (EN-GJS-500-7 grade with UTS=500 MPa) when using carbide tools coated with single TiAlN and multilayer TiC/Ti(C,N)/Al2O3/TiN coatings, as well as silicon nitride (Si3N4) based ceramic tools. As a competitor, a P20 uncoated carbide grade was selected. The fundamental process readings include cutting and feed forces, the tool–chip interface temperature, Peclet number, friction coefficient and the tool–chip contact length as functions of cutting parameters. In particular, the measurements of cutting temperature were carried out using conventional tool–work thermocouple method and IR thermography. It is concluded based on many process characteristics that multilayer coated and ceramic tools can substantially improve the performance of nodular iron machining.  相似文献   

6.
Nowadays, the HPM of cast irons is based on silicon nitride ceramic and CBN cutting tools. This paper characterizes and correlates several outputs of the cutting process of nodular cast iron using uncoated and Al2O3/TiN coated Si3N4 ceramic tools resulting from wear progress and destruction of tool faces. Investigations include tool wear curves, tribological behaviour of the tool–chip interface and tool wear mechanisms occurring on contact surfaces. The image-based characterization of worn surfaces employs such techniques as SEM, BSE and EDX analysis. The occurrence of various wear mechanisms, such as abrasive, adhesive and chemical wear was revealed.  相似文献   

7.
Thermomechanical modelling of oblique cutting and experimental validation   总被引:1,自引:4,他引:1  
An analytical approach is used to model oblique cutting process. The material characteristics such as strain rate sensitivity, strain hardening and thermal softening are considered. The chip formation is supposed to occur mainly by shearing within a thin band called primary shear zone. The analysis is limited to stationary flow and the material flow within the primary shear zone is modelled by using a one-dimensional approach. Thermomechanical coupling and inertia effects are accounted for. The chip flow angle is determined by the assumption that the friction force on the tool face is collinear to the chip flow direction. At the chip–tool interface, the friction condition can be affected by the important heating induced by the large values of pressure and sliding velocity. In spite of the complexity of phenomena governing the friction law in machining, a reasonable assumption is to consider that the mean friction coefficient is primarily function of the average temperature at the tool–chip interface. Comparisons between model predictions and experimental results are performed for different values of cutting speed, undeformed chip thickness, normal cutting angle and inclination angle. A critical study is presented in order to show the influences of the input parameters of the model including the normal shear angle, the thickness of the primary shear zone and the pressure distribution at the tool–chip interface. The model permits to predict the cutting forces, the chip flow direction, the contact length between the chip and the tool and the temperature distribution at the tool–chip interface which has an important effect on tool wear.  相似文献   

8.
Green cutting has become focus of attention in ecological and environmental protection. Water vapor is cheap, pollution-free and eco-friendly. Therefore water vapor is a good and economical coolant and lubricant. Water vapor generator and vapor feeding system were developed to generate and feed water vapor. Comparative experiments were carried out in witch YT15 (P type in ISO) tool was used in cutting C45 steel under the conditions of compress air, oil water emulsion, water vapor as coolant and lubricant and dry cutting, respectively. The experimental results showed that with water vapor as coolant and lubricant the cutting force is further reduced, the friction coefficient, the chip deformation coefficient and the surface roughness value decreased and the cutting temperature lowered. Kinetic model of penetration capillary in tool–chip interface of cutting fluid revealed that the lubricity effect is much better with water vapor as coolant and lubricant because of its excellent penetration performance and forming of low shearing strength lubrication layer. Therefore, the use of water steam as coolant and lubricant proves to be a green cutting technique.  相似文献   

9.
The unlubricated friction and wear behaviors of Al2O3/TiC ceramic tool materials were evaluated in ambient air at temperature up to 800 °C by high temperature tribological tests. The friction coefficient and wear rates were measured. The microstructural changes and the wear surface features of the ceramics were examined by scanning electron microscopy. Results showed that the temperature had an important effect on the friction and wear behaviors of this Al2O3 based ceramic. The friction coefficient decreased with the increase of temperature, and the Al2O3/TiC ceramics exhibited the lowest friction coefficient in the case of 800 °C sliding operation. The wear rates increased with the increase of temperature. During sliding at temperature above 600 °C, oxidation of the TiC is to be expected, and the formation of lubricious oxide film on the wear track is beneficial to the reduction of friction coefficient. The wear mechanism of the composites at temperature less than 400 °C was primary abrasive wear, and the mechanisms of oxidative wear dominated in the case of 800 °C sliding operation.  相似文献   

10.
Finite Element Modeling (FEM) of chip formation has proved great sensitivity to tool/chip friction coefficient. This parameter cannot be adequately identified through conventional tests, because thermal and mechanical loadings during these tests are far from those encountered during machining. In this study, the inadequacy of using constant Coulomb's friction coefficient in FEM is showed. Although a good agreement is found for cutting force and chip thickness variables, significant differences can be found for feed force and tool–chip contact length. Differences of more than 50% are observed in some cases for those variables when FEM results are compared with experimental ones. A new approach to identify a friction model after experimental tests will be detailed. This new approach involves application of a variable friction coefficient at the tool–chip interface, which allows obtaining a better agreement between numerical results (differences close to 10%) regarding the feed force.  相似文献   

11.
Due to the poor mechanical properties of solid lubricants, direct addition to the ceramic matrix will reduce the mechanical properties of the material. In this study, Al(OH)3 was coated on the surface of nano CaF2 by non-uniform nucleation method and added to Al2O3/Ti(C,N) ceramic matrix. Al2O3/Ti(C,N)/CaF2@Al2O3 was prepared by vacuum hot pressing sintering. Compared with the material directly added with nano-solid lubricant, the mechanical properties of ceramic tools added with coated nano-solid lubricant have been significantly improved. Among them, when the content of coated nano-solid lubricant is 10 vol%, the ceramic material has better comprehensive mechanical properties. SEM observation shows that the cross-sectional particle distribution of nano-coated powder ceramic material is relatively uniform and has good compactness. The fracture mode of ceramic materials is a mixed fracture mode of intergranular fracture and transgranular fracture.  相似文献   

12.
The study analyses the tribological properties of a composite plasma sprayed with Al2O3-3TiO2 mixed in various proportions with CaF2, which is known as a solid lubricant. The coatings were plasma-sprayed in air and were tested using a pin-on-disc tribological set-up. The tests enabled to study their wear resistance and determine the coefficient of friction on the basis of friction force obtained in the course of continuous measurement at a set load. Experiments were optimized by the use of the two-level experiment design aimed at finding the optimal content of CaF2 in the composite. The influence of the spraying parameters on the coefficient of friction, hardness and surface roughness was determined by means of regression analysis. Metallographical studies of the plasma-sprayed composite were conducted with the use of a scanning microscope with an energy dispersion spectrometer (EDS).  相似文献   

13.
Effects of yttrium on the mechanical property and the cutting performance of Al2O3/Ti(C,N) composite ceramic tool material have been studied in detail. Results show that the addition of yttrium of a certain amount can noticeably improve the mechanical property of Al2O3/Ti(C,N) ceramic material. As a result, the flexural strength and the fracture toughness amount to 1010 MPa and 6.1 MPam1/2, respectively. Cutting experiments indicate that the developed ceramic tool material not only has better wear resistance but also has higher fracture resistance when machining hardened #45 steel. The fracture resistance of the yttrium-reinforced Al2O3/Ti(C,N) ceramic tool material is about 20% higher than that of the corresponding ceramic tool material without any yttrium additives.  相似文献   

14.
In this paper, analytical models for estimating the interface temperature and heat partition to the chip in continuous dry machining of steels with flat-faced tools treated with multilayer coatings are presented. The database for modeling includes changes in the thermal properties of both workpiece and substrate/coating materials and the Peclet and Fourier numbers occurring at actual interface temperatures. Process outputs involve the average tool–chip interface temperature, the tool–chip contact length, the friction energy and the heat balance between the moving chip and stationary tool. It was found that the heat partition coefficient varies significantly from 0.65 to 0.8 when using multilayer coated tools, and changes from 0.5 to 0.6 for uncoated carbide tools. This implies that the use of multilayer coated tools causes about 30% more heat generated due to friction to be transferred into the moving chip. In general, both power and linear models can be used to estimate the interface temperature.  相似文献   

15.
Conventional cutting fluid serves both as a coolant and lubricant. In cryogenic machining, liquid nitrogen (LN2) is recognized as an effective coolant due to its low temperature; however, its lubrication properties are not well known. The focus of this study was to investigate how the friction between the chip and the tool is affected by focused jetting LN2 to the cutting point in machining Ti–6Al–4V. Results of cutting force measurements indicated that the cold strengthening of titanium material increased the cutting force in cryogenic machining, but lower friction reduced the feed force. A mathematical model was developed to convert the measured 3D forces in oblique cutting into the normal and frictional force components on the tool rake face, and then to calculate the effective friction coefficient. It was found that the friction coefficient on the tool–chip interface was considerably reduced in cryogenic machining. Increased shear angle and decreased thickness of the secondary deformation zone, findings from a chip microstructure study, offer further evidence that friction is reduced.  相似文献   

16.
In this study the surface integrity produced by oblique turning of a range of iron-based materials including C45 carbon, 41Cr4 low-alloy hardened, X6CrNiTi18-10 stainless steels and EN-GJS-500-7 spheroidal iron was quantified by means of 2D and 3D surface roughness parameters, strain-hardening effects and associated residual stresses. Surfaces were produced by a special straight-edged cutting tool with large inclination angle of 55° equipped with carbide and mixed Al2O3–TiC ceramic cutting tool inserts. It was documented that oblique machining performed with relatively higher feed rate allows obtaining lower surface roughness and, in general, better bearing characteristics. Moreover, compressive stresses with the maximum value located close to the machined surface and parabolic profile can be induced into the surface layer. The magnitude of stresses depends on the strain-hardening rate of the surface layer.  相似文献   

17.
This paper deals with an experimental and analytical investigation into the different factors which influence the temperature distribution on Al2O3---TiC ceramic tool rake face during machining of difficult-to-cut materials, such as case hardened AISI 1552 steel (60–65 Rc) and nickel-based superalloys (e.g. Inconel 718). The temperature distribution was predicted first using the finite element analysis. Temperature measurements on the tool rake face using a thermocouple based technique were performed and the results were verified using the finite element analysis. Experiments were then performed to study the effect of cutting parameters, different tool geometries, tool conditions, and workpiece materials on the cutting edge temperatures. Results presented in this paper indicate that for turning case hardened steel, increasing the cutting speed, feted, and depth of cut will increase the cutting edge temperature. On the other hand, increasing the tool nose radius, and angle of approach reduces the cutting edge temperature, while increasing the width of the tool chamfer will slightly increase the cutting ege temperature. As for the negative rake angle, it was found that there is an optimum value of rake angle where the cutting edge temperature was minimum. For the Inconel 718 material, it was found that the cutting edge temperature reached a minimum at a speed of 510 m/min, and feed of 1.25 mm/rev. However, the effect of the depth of cut and tool nose radius was almost the same as that determined in the turning of case hardened steel. It was also observed in turning Inconel 718 with ceramic tools that, cutting forces and different types of tool wear were reduced with increasing the feed.  相似文献   

18.
The Ni3Al matrix self-lubricating composite was fabricated by powder metallurgy technique. The tribological behavior of the composite sliding against commercial Si3N4, SiC and Al2O3 ceramic balls was investigated from 20 to 1000 °C. It was found that the composite demonstrated excellent lubricating properties with different friction pairs at a wide temperature range, which can be attributed to the synergetic effect of Ag, fluorides, and molybdates formed by oxidations. The Ni3Al matrix self-lubricating composite/Si3N4 couple possessed the stable friction coefficient and wear rate.  相似文献   

19.
Design, fabrication and application of ceramic cutting tools are one of the important research topics in the field of metal cutting and advanced ceramic materials. In the present study, wear resistance of an advanced Al2O3/Ti(C,N)/SiC multiphase composite ceramic tool material have been studied when dry machining hardened tool steel and cast iron under different cutting conditions. Microstructures of the worn materials were observed with scanning electronic microscope to help analyze wear mechanisms. It is shown that when machining hardened tool steel at low speed wear mode of the kind of ceramic tool material is mainly flank wear with slight crater wear. The adhesion between tool and work piece is relatively weak. With the increase of cutting speed, cutting temperature increases consequently. As a result, the adhesion is intensified both in the crater area and flank face. The ceramic tool material has good wear resistance when machining grey cast iron with uniform flank wear. Wear mechanism is mainly abrasive wear at low cutting speed, while adhesion is intensified in the wear area at high cutting speed. Wear modes are dominantly rake face wear and flank wear in this case.  相似文献   

20.
Dense Ti–Al2O3–TiC cermet and TiC–TiB2 ceramic composites have been fabricated by high-pressure high-temperature (HPHT) sintering starting from metastable nanostructured powders obtained by means of a technique based on the self-propagating high-temperature synthesis (SHS) process. The microstructural observations showed that an ultrafine microstructure was retained in the sintered composites thanks to the limited grain growth allowed by the short sintering duration of the HPHT method. The sintered TiC–TiB2 and Ti–Al2O3–TiC fine-grained bulk composites exhibited high values of hardness and Young modulus. The tribological characterization confirmed the good properties of both the materials in terms of wear-resistance and makes them very promising candidates for demanding applications. The influence of the ultrafine grain size on physical and tribological properties of the densified materials is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号