共查询到20条相似文献,搜索用时 15 毫秒
1.
Surfactant enhanced electrokinetic remediation of DDT from soils 总被引:3,自引:0,他引:3
Electrokinetic remediation has been investigated extensively as one of the noble technologies in remediation of metal contaminated soils. However, its applications in remediation of organic contaminants have been limited due to low solubilities of organics in water. In addition, most organic contaminants are non-ionic and therefore, they are not mobile under electrical field. The use of surfactants may increase the remediation efficiency by increasing the solubility of organics. Significant fraction of organics associated with soil, can be transferred to micellar phase, which then can be transported toward either cathode or anode, depending on the ionic group of surfactants. In this study, the removal of hydrophobic organic contaminants from a soil using electrokinetic method was investigated in the presence of surfactants. A nonionic surfactant, Tween 80, and an anionic surfactant, SDBS, were used in the experiments. DDT was chosen as the model organic contaminant. Phase distribution studies and column experiments were conducted. It was found that both Tween 80 and SDBS had similar solubilization potentials for DDT. It was also shown that the aqueous DDT mass could reach from 0.01 to 13% of the total mass in the presence of 7500 mg/L of SDBS. No significant movement of DDT was observed when Tween 80 was used in the column experiments. This was attributed to low rates of electroosmotic flows and strong interaction of Tween 80 with the soil. The amount of surfactant was not enough to mobilize DDT significantly in the column studies. On the other hand, electrokinetic transport with SDBS yielded much better results. DDT transport toward the anode within the negatively charged micelles overcame the opposite electrosmotic flow. This was attributed to the lower degree of interaction between the soil and SDBS, and the electrokinetic transport of negatively charged micelles. 相似文献
2.
The removal of Cu(II) by adsorption on fly ash has been found to be concentration, pH and temperature dependent. The kinetics of adsorption indicates the process to be diffusion controlled. The Langmuir constants have been calculated at different temperatures, and the adsorption has been found to be endothermic (ΔH = 15.652 kcal mol?1). The maximum removal is observed at pH 8.0, and variation in adsorption with pH has been explained on the basis of surface ionisation and complexation. 相似文献
3.
The use of ozone as a pre-oxidant or intermediate oxidant in drinking-water treatment is becoming increasingly common. The ozonation of natural source waters containing natural organic matter produces biodegradable by-products such as organic acids, aldehydes, and ketoacids. These organic by-products serve as carbon source for bacteria, potentially causing regrowth problems in distribution systems. The measurement of biodegradable dissolved organic carbon (BDOC) provides quantitative insight into the amount of BDOC that is present. In drinking-water treatment, removal of BDOC can also reduce the formation potential of chlorination disinfection by-products such as trihalomethanes and haloacetic acids. Removal of BDOC was optimal at an applied ozone:DOC ratio of 2:1 (mg/mg) for source waters containing DOC levels ranging from 3 to 6 mg/liter. The use of biotreatment resulted in a 40–50% decrease in DOC, a 90–100% reduction in aldehydes, and a 40–60% reduction in trihalomethane formation potential. No removal of bromate ion and dibromoacetic acid was observed. A positive correlation was obtained between BDOC and assimilable organic carbon; both parameters indicate a tendency to plateau at an applied ozone/DOC weight ratio of 2:1. 相似文献
4.
Y. C. Sharma G. Prasad D. I. Rupainwar 《The International journal of environmental studies》2013,70(4):315-320
The adsorption of Cd(II) onto wollastonite has been reported. Adsorption increased from 55.7 to 93.6% by decreasing the concentration of Cd(II) from 2.0 x 10‐4M to 0.5 x 10‐4M. The rearranged Lagergren equation has been used for dynamic modelling of the process. However, the value of rate constant at 30°C was found to be 3.17 x 10‐2min‐1. Equilibrium modelling was carried out using the Freundlich isotherm equation and constants have been calculated. Thermodynamic studies were carried out and values of standard free energy (?G°), enthalpy (?H°) and entropy (AS°) were calculated at various temperatures. Low temperatures favour the uptake of Cd(II) in the process. 相似文献
5.
The results of preliminary screening tests comparing the total Hg(II) removal capacity of 11 different brands of commercial activated carbon indicated that a very high percent (99–100%) total Hg removal was attained by all types of activated carbon especially at pH 4–5; the percent total Hg(II) removal decreased with pH's 4–5 except activated carbons Nuchar SA and SN which maintained a relatively high percent (>90%) total Hg(II) removal capacity at all pH values. Experiments were then conducted to reveal the mechanisms of Hg(II) removal by Nuchar SA (a powdered carbon). The results show that total Hg(II) removal was brought by two mechanisms: the adsorption and reduction. In order to investigate the kinetics of these two reactions, volatilization by bubbling N2 gas at high flow rate was used to remove the Hg(g) product of the reduction reaction. It was noted that both the adsorption and the reduction/volatilization reactions were highly pH-dependent; at pH approx. <3–4 or > approx. 9–10 the extent of reduction/volatilization reaction superceded the adsorption reaction; whereas in the mid-pH region adsorption reaction dominated the total Hg(II) removal. The rate of adsorption reaction is very fast, reaching equilibrium in a few minutes; the rate of reduction/volatilization follows a linear √t expression. The reduction reaction is more significant with Filtrasorb 400 (H-type carbon) than Nuchar SA (L-type carbon). In the presence of strong chelating agent, ethylenediaminetetraacetate (EDTA), the total Hg(II) removal decreases due partly to the formation of less adsorbably mercuric(II)-EDTA complexes. 相似文献
6.
C.P. Jordão W.L. Pereira D.M. Carari R.B.A. Fernandes R.M. De Almeida M.P.F. Fontes 《The International journal of environmental studies》2013,70(5):719-736
The potential of cattle manure vermicompost and Brazilian soils (whole soils and soils incubated with vermicompost) was assessed for adsorption of heavy metals such as Cu(II) and Cd(II) from aqueous solutions. Experimental data have been fitted to Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model, with R 2 values from 0.89 to 0.99. Based on the maximum adsorption capacity obtained from the Langmuir isotherm the affinity of the studied metals for the vermicompost and soils have been established as Cu(II) > Cd(II). The values of the separation factor, R L, which has been used to predict affinity between adsorbate and adsorbent were between zero and 1, indicating that sorption was very favourable for Cu(II) and Cd(II) in synthetic solution. Addition of vermicompost to soils resulted in higher distribution coefficient, K d, as compared with whole soils. The thermodynamic parameter, the Gibbs energy changes, was calculated for each system and the negative values obtained confirm that the adsorption processes are spontaneous. The ΔG° values for the substrates were between ?2.630±1.41 kJ mol?1 and ?13.700±1.250 kJ mol?1. Adsorption tests from multimetal systems confirm the affinity order obtained in the individual metal tests. The adsorption capacity for Cu(II) measured in individual tests is not reduced by the presence of Cd(II). There is also desorption of Cu(II) and Cd(II) previously bound to vermicompost, whole soils and soils incubated with vermicompost by DTPA. The experiment indicates the importance of cattle manure vermicompost and oxisol amended with vermicompost in relation to Cu(II) and Cd(II) adsorption from aqueous solution. 相似文献
7.
The capacity of ion exchange resins, IRN77 and SKN1, for removal of cobalt from aqueous solution has been investigated under different conditions namely initial solution pH, initial metal-ion concentration, and contact time. The equilibrium data obtained in this study have been found to fit both the Langmuir and Freundlich adsorption isotherms. The adsorption of Co(II) on these resins follows first-order reversible kinetics. The film diffusion of Co(II) in these ion exchange resins was shown to be the main rate limiting step. The studies showed that these cation exchange resins can be used as efficient adsorbent material for the removal of Co(II) from aqueous solutions. 相似文献
8.
Multi-component adsorption of Ag(I), Cd(II) and Cu(II) by natural carbonaceous materials 总被引:1,自引:0,他引:1
Adsorption of silver, cadmium and copper from aqueous solutions by natural carbonaceous materials was investigated. The studied series of natural materials (spruce wood, pine bark, cork, peat, fusinite, lignite, oxidised lignite, bituminous coal and anthracite) was extended to include industrial carbon-rich materials: coke, activated carbon F-400 and Multisorb 100. Adsorption was tested on a single-component system and on the binary and ternary mixtures. All the materials used differ in their ability to adsorb selected metals. The adsorption of metals is significantly affected by the presence of other ions in solution. Total metal uptake was considerably higher in a mixture than single-ion adsorption. Chemical reactions, such as precipitation and reduction of metallic silver, play a role in metal uptake by bituminous coal, coke and activated carbon. 相似文献
9.
Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters 总被引:3,自引:0,他引:3
Qing Su Bingjun Pan Weiming Zhang Xiaoshu Wang Quanxing Zhang 《The Science of the total environment》2009,407(21):5471-5477
In the current study, a new hybrid adsorbent HMO-001 was fabricated by impregnating nanosized hydrous manganese dioxide (HMO) onto a porous polystyrene cation exchanger resin (D-001) for enhanced lead removal from aqueous media. D-001 was selected as a support material mainly because of the potential Donnan membrane effect exerted by the immobilized negatively charged sulfonic acid groups bound to the polymeric matrix, which would result in preconcentration and permeation enhancement of lead ions prior to their effective sequestration by the impregnated HMO. HMO-001 was characterized by scanning electron micrograph (SEM), transmission electron micrograph (TEM), and X-ray diffraction (XRD). Lead adsorption onto HMO-001 was dependent upon solution pH due to the ion-exchange nature, and it can be represented by the Freundlich isotherm model and pseudo-first order kinetic model well. The maximum capacity of HMO-001 toward lead ion was about 395 mg/g. As compared to D-001, HMO-001 exhibited highly selective lead retention from waters in the presence of competing Ca2+, Mg2+, and Na+ at much greater levels than the target toxic metal. Fixed-bed column adsorption of a simulated water indicated that lead retention on HMO-001 resulted in a conspicuous decrease of this toxic metal from 1 mg/L to below 0.01 mg/L (the drinking water standard recommended by WHO). The exhausted adsorbent particles are amenable to efficient regeneration by the binary NaAc-HAc solution for repeated use without any significant capacity loss. All the results validated the feasibility of HMO-001 for highly effective removal of lead from contaminated waters. 相似文献
10.
通过考察强化混凝中混凝剂种类及投加量、氧化性助凝剂种类及投加量、氧化时间、pH以及水力条件等因素对海水中Chl-a、CODMn去除效果的影响,确定了试验参数,并后续加入砂滤工艺考察其除藻效果.结果表明:在调节海水pH值为5~6,选用3 mg/L高锰酸钾预氧化30min后,投加混凝剂聚合氯化铝铁(PAFC)对Chl-a和CODMn均有较佳的去除效果.强化混凝-沉淀-砂滤工艺对Chl-a平均去除率可以达到80%以上,对CODMn去除率在50%左右,对浊度的去除率大干97%. 相似文献
11.
The ability of wood to adsorb Telon Blue (Acid Blue 25) has been investigated. The effects of contact time, particle size and adsorption capacity have been studied. In addition a series of fixed bed experiments were performed to study the flow system in an attempt to simulate industrial conditions on a small scale. 相似文献
12.
The removal of Cu(II) by a mesoporous material, FSM-16, was studied using electron paramagnetic resonance (EPR) spectroscopy and surface complexation modeling (SCM). Free copper ions, adsorbed and precipitated Cu(II) species were qualitatively identified by in situ EPR spectroscopy of Cu-FSM-16 suspensions at room temperature and at 77 K. In addition, the adsorbed species was identified as a Cu(II) species with an axial symmetry from an analysis of the EPR spectra of "dry" Cu-FSM-16 at 77 K. On the basis of the EPR results, the removal of Cu(II) as a function of pH under various experimental conditions was successfully simulated by assuming two removal mechanisms such as surface complexation and surface precipitation. In the acidic pH range (< pH 6), free copper ions were predominant, and surface complexed then surface precipitated species became dominant as the pH increased. 相似文献
13.
The effectiveness of Cu2+, Cd2+ and Zn2+ removal from solution by alum coagulation was measured with fulvic acid present and absent. A factorial experimental design and analysis of variance were used to determine the effect on metal ion removal of the individual variables pH, metal ion concentration, alum concentration and fulvic acid concentration and their combinations. The variable levels model water treatment plant conditions. Metal ion losses up to 96% for Cu2+. 59% for Cd2+ and 82% for Znz+ were measured in the presence of fulvic acid. In its absence the maximum metal ion losses observed were 93%, 14% and 53% for Cu2+, Cd2+ and Zn2+ respectively. Fulvic acid enhances metal ion removal under most experimental conditions. The practical implication of the results is that strong complexes between natural water organic matter and metal ions enhance their removal by the alum coagulation process. 相似文献
14.
Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents 总被引:5,自引:0,他引:5
Phosphate originated from industrial effluents is one of the key factors responsible for eutrophication of the receiving waterways especially in the developing countries such as China. In the current study we proposed a novel process to immobilize nanoparticulate hydrated ferric oxide (HFO) within a macroporous anion exchange resin D-201, and obtained a hybrid adsorbent (HFO-201) for enhanced phosphate removal from aqueous system. The resulting HFO-201 possesses two types of adsorption sites for phosphate removal, the ammonium groups bound to the D-201 matrix and the loaded HFO nanoparticles. The coexisting sulfate anion strongly competes for ammonium groups, which bind phosphate through electrostatic interaction. However, it does not pose any noticeable effect on phosphate adsorption by the loaded HFO nanoparticles, which is driven by the formation of the inner-sphere complexes. Batch adsorption experiments also indicated that HFO-201 exhibits a little higher capacity for phosphate than the commercially available phosphate-specific adsorbent ArsenXnp, which possesses similar structure of HFO-201 and is produced by another patented technique. Fixed-bed column tests indicate that phosphate retention by HFO-201 from the synthetic waters results in the significant decrease of P from 2 mg/L to less than 0.01 mg/L, with the treatment capacity of ∼700 bed volume (BV) per run, while that for D-201 was less than 200 BV under otherwise identical conditions. Such satisfactory performance of the hybrid adsorbent is mainly attributed to the specific affinity of HFO toward phosphate as well as the Donnan membrane effect exerted by the anion exchanger support D-201. Moreover, the exhausted HFO-201 was amenable to efficient in situ regeneration with a binary NaOH-NaCl solution for repeated use without any significant capacity loss. Similar satisfactory results were also observed by using a phosphate-containing industrial effluent as the feeding solution. 相似文献
15.
Hexavalent chromium removal from near natural water by copper-iron bimetallic particles 总被引:3,自引:0,他引:3
The reduction of hexavalent chromium (Cr(VI)) by zero-valent iron (ZVI) is self-inhibiting in near natural groundwater because insulating Fe(III)-Cr(III) (oxy)hydroxide film forms on the ZVI surface during the reaction. This study tries to overcome this deficiency by coating the surface of ZVI with copper to form copper-iron bimetallic particles. The Cr(VI) removal rate by ZVI rose significantly after the copper coating was applied. The copper loading needed for enhancing Cr(VI) removal was much higher than that needed for enhancing removal of chlorinated organic compounds or other oxidative contaminants, because of the higher oxidation potential of Cr(VI). The results of X-ray photoelectron spectroscopy (XPS) indicate that coating copper onto the surface of ZVI can not only increase the deepness of the oxidation film but also increase the oxidation state of iron in the film. This phenomenon means higher Cr(VI) removal capacity per unit weight of ZVI. 相似文献
16.
As(V) removal from aqueous solutions by fly ash 总被引:2,自引:0,他引:2
Evan Diamadopoulos Socrates Ioannidis George P. Sakellaropoulos 《Water research》1993,27(12):1773-1777
The present work examines the possible use of fly ash, a by-product of coal power stations, as a means of removing arsenic (V) from water, or equivalently, of restricting its movement in the solid wastes or the soil. Kinetic and equilibrium experiments were performed in order to evaluate the removal efficiency of lignite-based fly ash. Both adsorption and desorption experiments were done at three pH levels, namely 4, 7 and 10. The results indicated that arsenic can be removed from water by fly ash, yet the degree of removal depended markedly on the pH. Removal at pH 4, as demonstrated by the adsorption isotherms, was significantly higher than that at the other two pH values. For 80% removal of arsenic, the solid phase concentration at pH 4 was up to 4 times greater than that at the other two pH levels. During the desorption studies only a small amount of the pre-adsorbed arsenic was released into the water. This amount was practically independent of the initial fly ash loading. This indicates that adsorption of arsenic on fly ash is almost irreversible and, therefore, there are good prospects for arsenic fixation on fly ash in practical applications. 相似文献
17.
《Geotextiles and Geomembranes》1986,3(1):3-27
An analytical model for moisture flow in the composite system of soil-impregnated geotextile-air is presented. It is directed towards the membrane encapsulated soil layer (MESL) problem, although the approach is applicable to a wide range of geomembrane situations. General results are obtained as a function of membrane diffusion coefficients for the change in water content of an encapsulated soil mass over a given time. As an example, by using a criterion of allowing no more than a 1% change in water content of the encapsulated soil (100 cm thick) over one year, it is found that a diffusion coefficient of 10−7 cm2/s or lower is needed for a 0·1 cm thick membrane. Similarly, other situations of practical interest can be formulated. 相似文献
18.
Platinum concentrations in topsoil samples collected in 1992 (48) and in 2001 (16) from the urban area of Rome have been determined by ICP-MS. Concentrations in 47 soil samples collected in 1992 from natural sites of Latium (an area around Rome) have been determined for a first assessment of natural background levels. The Pt concentrations in Rome urban soils collected in 1992 range from 0.8 to 6.3 ng/g (mean = 3.8 +/- 1.0) overlapping the concentration range of natural soils from Latium (mean = 3.1 +/- 2.1 ng/g). No significant correlation has generally been found between Pt contents in the 'natural' soils and related bedrock or major pedogenetic parameters. These results suggest that there is no evidence of Pt pollution in Rome urban soils at that time, because the massive use of the automobile catalytic converter has only just started. Higher (up to six times more) Pt concentrations, than those measured in the 1992 samples, have been measured, in some cases, in Rome urban soils collected in 2001, suggesting a possible start of Pt accumulation because of the large-scale use in the last decade of automobile catalytic converters. At the same time, a clear decrease of lead levels in Rome urban soils with respect to the levels measured in 1992 has been observed, paralleling the decreasing number of lead gasoline-fuelled cars. Here we present one of the first systematic studies for defining background levels of Pt in Italian natural soils, thus allowing for monitoring, in the future, should any possible Pt pollution caused by the use of automobile catalytic converter, especially in urban soils, occur. 相似文献
19.
Isamu Saito 《Water research》1984,18(3):319-323
The removal of iron cyano-complex ions [hexacyanoferrate(II) and (III) ions] in a dilute aqueous solution by activated carbon was investigated. The maximum adsorption of iron cyano-complex ions on activated carbon occurred at pH around 3. The hexacyanoferrate(III) ion was more adsorbable than the hexacyanoferrate(II) ion. Activated carbon promoted the oxidation of hexacyanoferrate(II) ion to (III) ion with dissolved oxygen in an acidic solution and the reduction of hexacyanoferrate(III) ion to (II) ion in an alkaline solution. The iron cyano-complex ion adsorbed on activated carbon could be eluted with higher concentrated acidic and alkaline solutions. The degree of elution decreased with an increase in potassium hydroxide concentration, since parts of the iron cyano-complexes on activated carbon were decomposed to form the iron hydroxide and the hexacyanoferrate(II) ion with an alkaline solution. The behavior of iron cyano-complexes in the presence of activated carbon, in the lower pH range (pH < 1) and at higher temperatures (80°C), was discussed. 相似文献
20.
V. S. Shunkov L. N. Puzyrnaya G. N. Pshinko A. A. Kosorukov V. Ya. Demchenko 《Journal of Water Chemistry and Technology》2018,40(5):279-284
The possibility of using magnetic sorbents for the removal of Co(II), Ni(II) and Cd(II) from water media is shown. It was established that magnetite is more effective compared with magnetic potassium–zinc hexacyanoferrate(II). The pH (> 4) and the dose of sorbents were defined for obtaining maximum possible degree of removing ions of specified metals from water media. 相似文献