首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct growth of graphene/hexagonal boron nitride stacked layers   总被引:1,自引:0,他引:1  
Liu Z  Song L  Zhao S  Huang J  Ma L  Zhang J  Lou J  Ajayan PM 《Nano letters》2011,11(5):2032-2037
Graphene (G) and atomic layers of hexagonal boron nitride (h-BN) are complementary two-dimensional materials, structurally very similar but with vastly different electronic properties. Recent studies indicate that h-BN atomic layers would be excellent dielectric layers to complement graphene electronics. Graphene on h-BN has been realized via peeling of layers from bulk material to create G/h-BN stacks. Considering that both these layers can be independently grown via chemical vapor deposition (CVD) of their precursors on metal substrates, it is feasible that these can be sequentially grown on substrates to create the G/h-BN stacked layers useful for applications. Here we demonstrate the direct CVD growth of h-BN on highly oriented pyrolytic graphite and on mechanically exfoliated graphene, as well as the large area growth of G/h-BN stacks, consisting of few layers of graphene and h-BN, via a two-step CVD process. The G/h-BN film is uniform and continuous and could be transferred onto different substrates for further characterization and device fabrication.  相似文献   

2.
When combined with graphene, hexagonal boron nitride (h-BN) is an ideal substrate and gate dielectric with which to build metal|h-BN|graphene field-effect devices. We use first-principles density functional theory (DFT) calculations for Cu|h-BN|graphene stacks to study how the graphene doping depends on the thickness of the h-BN layer and on a potential difference applied between Cu and graphene. We develop an analytical model that describes the doping very well, allowing us to identify the key parameters that govern the device behavior. A predicted intrinsic doping of graphene is particularly prominent for ultrathin h-BN layers and should be observable in experiment. It is dominated by novel interface terms that we evaluate from DFT calculations for the individual materials and for interfaces between h-BN and Cu or graphene.  相似文献   

3.
We investigate the electronic properties of ultrathin hexagonal boron nitride (h-BN) crystalline layers with different conducting materials (graphite, graphene, and gold) on either side of the barrier layer. The tunnel current depends exponentially on the number of h-BN atomic layers, down to a monolayer thickness. Conductive atomic force microscopy scans across h-BN terraces of different thickness reveal a high level of uniformity in the tunnel current. Our results demonstrate that atomically thin h-BN acts as a defect-free dielectric with a high breakdown field. It offers great potential for applications in tunnel devices and in field-effect transistors with a high carrier density in the conducting channel.  相似文献   

4.
六方氮化硼(h-BN)二维原子晶体以其独特的结构、优异的性质以及广泛的应用前景引起了人们的普遍关注。高质量h-BN材料的制备是其性质研究与实际应用的前提。机械剥离的h-BN尺寸有限, 普遍采用的化学气相沉积(CVD)技术通常以过渡金属为衬底, 器件应用时需要将h-BN转移到其它衬底上。因此, 在介质衬底上直接生长h-BN成为二维材料研究领域的一个重要发展方向。本文总结了近年来介质衬底(包括: Si基衬底、蓝宝石衬底和石英衬底等)上直接生长h-BN二维原子晶体的主要进展。人们采用CVD、金属有机气相外延法(MOVPE)、物理气相沉积法(PVD)等方法, 通过提高生长温度、衬底表面处理、两步生长等工艺实现了介质衬底上直接生长h-BN。此外, 还介绍了介质衬底上h-BN二维原子晶体的主要应用。  相似文献   

5.
Understanding of graphene nucleation and growth on a metal substrate in chemical vapor deposition (CVD) process is critical to obtain high-quality single crystal graphene. Here, we report synthesis of individual hexagonal graphene and their large cluster on Cu foil using solid camphor as a carbon precursor in the atmospheric pressure CVD (AP-CVD) process. Optical and scanning electron microscopy studies show formation of hexagonal graphene crystals across the grain, grain boundaries and twin boundaries of polycrystalline Cu foil. Electron backscattered diffraction analysis is carried out before and after the growth to identify Cu grain orientation correlating with the graphene formation. The influence of growth conditions and Cu grain structure is explored on individual hexagonal graphene formation in the camphor-based AP-CVD process.  相似文献   

6.
Lee KH  Shin HJ  Lee J  Lee IY  Kim GH  Choi JY  Kim SW 《Nano letters》2012,12(2):714-718
Hexagonal boron nitride (h-BN) has received a great deal of attention as a substrate material for high-performance graphene electronics because it has an atomically smooth surface, lattice constant similar to that of graphene, large optical phonon modes, and a large electrical band gap. Herein, we report the large-scale synthesis of high-quality h-BN nanosheets in a chemical vapor deposition (CVD) process by controlling the surface morphologies of the copper (Cu) catalysts. It was found that morphology control of the Cu foil is much critical for the formation of the pure h-BN nanosheets as well as the improvement of their crystallinity. For the first time, we demonstrate the performance enhancement of CVD-based graphene devices with large-scale h-BN nanosheets. The mobility of the graphene device on the h-BN nanosheets was increased 3 times compared to that without the h-BN nanosheets. The on-off ratio of the drain current is 2 times higher than that of the graphene device without h-BN. This work suggests that high-quality h-BN nanosheets based on CVD are very promising for high-performance large-area graphene electronics.  相似文献   

7.
Tuning the properties of van der Waals heterostructures based on alternating layers of two-dimensional materials is an emerging field of research with implications for electronics and photonics. Hexagonal boron nitride (h-BN) is an attractive insulating substrate for two-dimensional materials as it may exert less influence on the layer’s properties than silica. In this work, MoS2 layers were deposited by chemical vapor deposition (CVD) on thick h-BN flakes mechanically exfoliated deposited on Si/SiO2 substrates. CVD affords the controllable, large-scale preparation of MoS2 on h-BN alleviating shortcomings of manual mechanical assembly of such heterostructures. Electron microscopy revealed that in-plane and vertical to the substrate MoS2 layers were grown at high yield, depending on the sample preparation conditions. Raman and photoluminescence spectroscopy were employed to assess the optical and electronic quality of MoS2 grown on h-BN as well as the interactions between MoS2 and the supporting substrate. Compared to silica, MoS2 layers grown on h-BN are less prone to oxidation and are subjected to considerably weaker electronic perturbation.  相似文献   

8.
We demonstrate a synthesis of graphene layers on graphene templates prepared by the mechanical exfoliation of graphite crystals using a developed chemical vapor deposition (CVD) apparatus that has a furnace with three temperature zones and can regulate the temperatures separately in each zone. This results in individual control over the decomposition reaction of the carbon feedstock and the growth of graphene layers by activated carbon species. CVD growth using multi-temperature zones provides wider temperature windows appropriate to grow graphene layers. We observed that graphene layers proceed by a layer-by-layer growth mode using an optical microscopy, an atomic force microscopy, and Raman spectroscopy. This result suggests that a graphene growth technique using the CVD apparatus is a potential approach for making graphene sheets with precise control of the layer numbers.  相似文献   

9.
We use electric force microscopy (EFM) to study the response of supported few-layer hexagonal boron nitride (h-BN) to an electric field applied by the EFM tip. Our results show an anomalous behavior in the dielectric response of h-BN atop Si oxide for different bias polarities: for a positive bias applied to the tip, h-BN layers respond with a larger dielectric constant than the dielectric constant of the substrate, while for a negative bias, the h-BN dielectric constant appears to be smaller. Based on ab initio calculations, we propose that this behavior is due to a water layer confined between the Si oxide substrate and h-BN layers. This hypothesis was experimentally confirmed by sample annealing and also by a comparative analysis with h-BN on a non-polar substrate.  相似文献   

10.
Wu W  Yu Q  Peng P  Liu Z  Bao J  Pei SS 《Nanotechnology》2012,23(3):035603
Large-scale and transferable graphene films grown on metal substrates by chemical vapor deposition (CVD) still hold great promise for future nanotechnology. To realize the promise, one of the key issues is to further improve the quality of graphene, e.g., uniform thickness, large grain size, and low defects. Here we grow graphene films on Cu foils by CVD at ambient pressure, and study the graphene nucleation and growth processes under different concentrations of carbon precursor. On the basis of the results, we develop a two-step ambient pressure CVD process to synthesize continuous single-layer graphene films with large grain size (up to hundreds of square micrometers). Scanning electron microscopy and Raman spectroscopy characterizations confirm the film thickness and uniformity. The transferred graphene films on cover glass slips show high electrical conductivity and high optical transmittance that make them suitable as transparent conductive electrodes. The growth mechanism of CVD graphene on Cu is also discussed, and a growth model has been proposed. Our results provide important guidance toward the synthesis of high quality uniform graphene films, and could offer a great driving force for graphene based applications.  相似文献   

11.
The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16,000 cm(2) V(-1) s(-1) at room temperature.  相似文献   

12.
化学气相沉积(CVD)法是近年来发展起来的制备石墨烯的新方法。该方法产物具有生长面积大、质量高等优点,逐渐成为制备石墨烯的主要方法。用CVD法在常压下通过全面优化实验参量,以镍箔为基底制备了大面积少数层和单层石墨烯,用拉曼光谱,场发射扫描电子显微镜(SEM)和原子力显微镜(AFM)手段表征,通过分析常压下不同温度、不同载气成分比等实验参数,最终获得制备高质量、大面积、少数层石墨烯的最佳参量,用双共振理论解释少数层和单层石墨烯的拉曼光谱中2D峰强度随石墨烯层数变化而变化的原理。CVD法制备的石墨烯具有面积大、低成本、可测量性强、可用于大批量生产的优点,为工业用途石墨烯的制备提供了有效途径。  相似文献   

13.
Strong in-plane bonding and weak van der Waals interplanar interactions characterize a large number of layered materials, as epitomized by graphite. The advent of graphene (G), individual layers from graphite, and atomic layers isolated from a few other van der Waals bonded layered compounds has enabled the ability to pick, place, and stack atomic layers of arbitrary compositions and build unique layered materials, which would be otherwise impossible to synthesize via other known techniques. Here we demonstrate this concept for solids consisting of randomly stacked layers of graphene and hexagonal boron nitride (h-BN). Dispersions of exfoliated h-BN layers and graphene have been prepared by liquid phase exfoliation methods and mixed, in various concentrations, to create artificially stacked h-BN/G solids. These van der Waals stacked hybrid solid materials show interesting electrical, mechanical, and optical properties distinctly different from their starting parent layers. From extensive first principle calculations we identify (i) a novel approach to control the dipole at the h-BN/G interface by properly sandwiching or sliding layers of h-BN and graphene, and (ii) a way to inject carriers in graphene upon UV excitations of the Frenkell-like excitons of the h-BN layer(s). Our combined approach could be used to create artificial materials, made predominantly from inter planar van der Waals stacking of robust bond saturated atomic layers of different solids with vastly different properties.  相似文献   

14.
Low-energy electron microscopy (LEEM) has been used to study the structure, initial growth orientation, growth progression, and the number of layers of atomically thin hexagonal boron nitride (h-BN) films. The h-BN films are grown on heteroepitaxial Co using chemical vapor deposition (CVD) at low pressure. Our findings from LEEM studies include the growth of monolayer film having two, oppositely oriented, triangular BN domains commensurate with the Co lattice. The growth of h-BN appears to be self-limiting at a monolayer, with thicker domains only appearing in patches, presumably initiated between domain boundaries. Reflectivity measurements of the thicker h-BN films show oscillations resulting from the resonant electron transmission through quantized electronic states of the h-BN films, with the number of minima scaling up with the number of h-BN layers. First principles density functional theory (DFT) calculations show that the positions of oscillations are related to the electronic band structure of h-BN.   相似文献   

15.
Chemical vapor deposition is used to synthesize few‐layer graphene on micro crystalline sodium chloride (NaCl) powder. The water‐soluble nature of NaCl makes it convenient to produce free standing graphene layers via a facile and low‐cost approach. Unlike traditional metal‐catalyzed or oxygen‐aided growth, the micron‐size NaCl crystal planes play an important role in the nucleation and growth of few‐layer graphene. Moreover, the possibility of synthesizing cuboidal graphene is also demonstrated in the present approach for the first time. Raman spectroscopy, optical microscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy are used to evaluate the quality and structure of the few‐layer graphene along with cuboidal graphene obtained in this process. The few‐layer graphene synthesized using the present method has an adsorption ability for anionic and cationic dye molecules in water. The present synthesis method may pave a facile way for manufacturing few‐layer graphene on a large scale.  相似文献   

16.
We demonstrate the growth of high quality graphene layers by chemical vapor deposition (CVD) on insulating and conductive SiC substrates. This method provides key advantages over the well-developed epitaxial graphene growth by Si sublimation that has been known for decades. (1) CVD growth is much less sensitive to SiC surface defects resulting in high electron mobilities of ~1800 cm(2)/(V s) and enables the controlled synthesis of a determined number of graphene layers with a defined doping level. The high quality of graphene is evidenced by a unique combination of angle-resolved photoemission spectroscopy, Raman spectroscopy, transport measurements, scanning tunneling microscopy and ellipsometry. Our measurements indicate that CVD grown graphene is under less compressive strain than its epitaxial counterpart and confirms the existence of an electronic energy band gap. These features are essential for future applications of graphene electronics based on wafer scale graphene growth.  相似文献   

17.
Brown L  Hovden R  Huang P  Wojcik M  Muller DA  Park J 《Nano letters》2012,12(3):1609-1615
The electronic, optical, and mechanical properties of bilayer and trilayer graphene vary with their structure, including the stacking order and relative twist, providing novel ways to realize useful characteristics not available to single layer graphene. However, developing controlled growth of bilayer and trilayer graphene requires efficient large-scale characterization of multilayer graphene structures. Here, we use dark-field transmission electron microscopy for rapid and accurate determination of key structural parameters (twist angle, stacking order, and interlayer spacing) of few-layer CVD graphene. We image the long-range atomic registry for oriented bilayer and trilayer graphene, find that it conforms exclusively to either Bernal or rhombohedral stacking, and determine their relative abundances. In contrast, our data on twisted multilayers suggest the absence of such long-range atomic registry. The atomic registry and its absence are consistent with the two different strain-induced deformations we observe; by tilting the samples to break mirror symmetry, we find a high density of twinned domains in oriented multilayer graphene, where multiple domains of two different stacking configurations coexist, connected by discrete twin boundaries. In contrast, individual layers in twisted regions continuously stretch and shear independently, forming elaborate Moiré patterns. These results, and the twist angle distribution in our CVD graphene, can be understood in terms of an angle-dependent interlayer potential model.  相似文献   

18.
We report an alternative synthesis process, cold-wall thermal chemical vapor deposition (CVD), is replied to directly deposit single-layer and few-layer graphene films on Ar plasma treated Ni and Cu foils using CH4 as carbon source. Through optimizing the process parameters, large scale single-layer graphene grown on Ni foil is comparable to that grown on Cu foil. The graphene films were able to be transferred to other substrates such as SiO2/Si, flexible transparent PET and verified by optical microscopy, Raman microscopy and scanning electron microscopy. The sheet resistance and transmission of the transferred graphene films on PET substrate were also discussed.  相似文献   

19.
Remote catalyzation for direct formation of graphene layers on oxides   总被引:1,自引:0,他引:1  
Direct deposition of high-quality graphene layers on insulating substrates such as SiO(2) paves the way toward the development of graphene-based high-speed electronics. Here, we describe a novel growth technique that enables the direct deposition of graphene layers on SiO(2) with crystalline quality potentially comparable to graphene grown on Cu foils using chemical vapor deposition (CVD). Rather than using Cu foils as substrates, our approach uses them to provide subliming Cu atoms in the CVD process. The prime feature of the proposed technique is remote catalyzation using floating Cu and H atoms for the decomposition of hydrocarbons. This allows for the direct graphitization of carbon radicals on oxide surfaces, forming isolated low-defect graphene layers without the need for postgrowth etching or evaporation of the metal catalyst. The defect density of the resulting graphene layers can be significantly reduced by tuning growth parameters such as the gas ratios, Cu surface areas, and substrate-to-Cu distance. Under optimized conditions, graphene layers with nondiscernible Raman D peaks can be obtained when predeposited graphite flakes are used as seeds for extended growth.  相似文献   

20.
In this paper, large-area uniform multilayer graphene films were synthesized on copper in one growth route by modified low pressure chemical vapor deposition (LPCVD) method by introducing an assembly into the conventional LPCVD method. Scanning electronic microscopy, optical microscopy, Raman spectroscopy, ellipsometry, and transmission electron microscopy were used to characterize the graphene films. The results showed that the graphene films were multilayer. And there are about six layers with good continuity and uniformity. Meanwhile, the growth mechanism was illustrated by a growth model based on the analysis of the effects of the introduced assembly on the generation of the activated carbon atoms and on the catalysis of Cu molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号