首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frequent itemset mining aims at discovering patterns the supports of which are beyond a given threshold. In many applications, including network event management systems, which motivated this work, patterns are composed of items each described by a subset of attributes of a relational table. As it involves an exponential mining space, the efficient implementation of user preferences and mining constraints becomes the first priority for a mining algorithm. User preferences and mining constraints are often expressed using patterns attribute structures. Unlike traditional methods that mine all frequent patterns indiscriminately, we regard frequent itemset mining as a two-step process: the mining of the pattern structures and the mining of patterns within each pattern structure. In this paper, we present a novel architecture that uses pattern structures to organize the mining space. In comparison with the previous techniques, the advantage of our approach is two-fold: (i) by exploiting the interrelationships among pattern structures, execution times for mining can be reduced significantly; and (ii) more importantly, it enables us to incorporate high-level simple user preferences and mining constraints into the mining process efficiently. These advantages are demonstrated by our experiments using both synthetic and real-life datasets.  相似文献   

2.
Algorithms are typically designed to exploit the current state of the art in processor technology. However, as processor technology evolves, said algorithms are often unable to derive the maximum achievable performance on these modern architectures. In this paper, we examine the performance of frequent pattern mining algorithms on a modern processor. A detailed performance study reveals that even the best frequent pattern mining implementations, with highly efficient memory managers, still grossly under-utilize a modern processor. The primary performance bottlenecks are poor data locality and low instruction level parallelism (ILP). We propose a cache-conscious prefix tree to address this problem. The resulting tree improves spatial locality and also enhances the benefits from hardware cache line prefetching. Furthermore, the design of this data structure allows the use of path tiling, a novel tiling strategy, to improve temporal locality. The result is an overall speedup of up to 3.2 when compared with state of the art implementations. We then show how these algorithms can be improved further by realizing a non-naive thread-based decomposition that targets simultaneously multi-threaded processors (SMT). A key aspect of this decomposition is to ensure cache re-use between threads that are co-scheduled at a fine granularity. This optimization affords an additional speedup of 50%, resulting in an overall speedup of up to 4.8. The proposed optimizations also provide performance improvements on SMPs, and will most likely be beneficial on emerging processors.  相似文献   

3.
The key point of this article is that, in frequent pattern mining, the most appropriate way of exploiting monotone constraints in conjunction with frequency is to use them in order to reduce the input data; this reduction in turn induces a stronger pruning of the search space of the problem. Following this intuition, we introduce ExAMiner, a breadth-first algorithm that exploits the real synergy of antimonotone and monotone constraints: the total benefit is greater than the sum of the two individual benefits. ExAMiner generalizes the basic idea of the preprocessing algorithm ExAnte (Bonchi et al. 2003(b)), embedding such ideas at all levels of an Apriori-like computation. The resulting algorithm is the generalization of the Apriori algorithm when a conjunction of monotone constraints is conjoined to the frequency antimonotone constraint. Experimental results confirm that this is, so far, the most efficient way of attacking the computational problem in analysis.  相似文献   

4.
事务间频繁项集将传统的单维事务内关联规则扩展到多维跨事务关联规则,但事务问频繁项集的数量随滑 动时同间窗口的增大而迅速增加.利用频繁闭项集的特点.提出事务间频繁闭项集的概念及其挖掘算法(FCITA).该算法采用分割和条件数据库技术,避免生成庞大的扩展数据库;利用扩展二进制形武压缩事务,从而提高支持度的计算效事.此外,动态排序和哈希表极大地减少了频繁闭项集的测试次数.仿真比较表明,FCITA算法具有较高的挖掘效率.  相似文献   

5.
Existing algorithms of mining frequent XML query patterns (XQPs) employ a candidate generate-and-test strategy. They involve expensive candidate enumeration and costly tree-containment checking. Further, most of existing methods compute the frequencies of candidate query patterns from scratch periodically by checking the entire transaction database, which consists of XQPs transferred from user query logs. However, it is not straightforward to maintain such discovered frequent patterns in real XML databases as there may be frequent updates that may not only invalidate some existing frequent query patterns but also generate some new frequent query patterns. Therefore, a drawback of existing methods is that they are rather inefficient for the evolution of transaction databases. To address above-mentioned problems, this paper proposes an efficient algorithm ESPRIT to mine frequent XQPs without costly tree-containment checking. ESPRIT transforms XML queries into sequences using a one-to-one mapping technique and mines the frequent sequences to generate frequent XQPs. We propose two efficient incremental algorithms, ESPRIT-i and ESPRIT-i +, to incrementally mine frequent XQPs. We devise several novel optimization techniques of query rewriting, cache lookup, and cache replacement to improve the answerability and the hit rate of caching. We have implemented our algorithms and conducted a set of experimental studies on various datasets. The experimental results demonstrate that our algorithms achieve high efficiency and scalability and outperform state-of-the-art methods significantly.  相似文献   

6.
Frequent pattern mining: current status and future directions   总被引:10,自引:2,他引:10  
Frequent pattern mining has been a focused theme in data mining research for over a decade. Abundant literature has been dedicated to this research and tremendous progress has been made, ranging from efficient and scalable algorithms for frequent itemset mining in transaction databases to numerous research frontiers, such as sequential pattern mining, structured pattern mining, correlation mining, associative classification, and frequent pattern-based clustering, as well as their broad applications. In this article, we provide a brief overview of the current status of frequent pattern mining and discuss a few promising research directions. We believe that frequent pattern mining research has substantially broadened the scope of data analysis and will have deep impact on data mining methodologies and applications in the long run. However, there are still some challenging research issues that need to be solved before frequent pattern mining can claim a cornerstone approach in data mining applications. The work was supported in part by the U.S. National Science Foundation NSF IIS-05-13678/06-42771 and NSF BDI-05-15813. Any opinions, findings, and conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the funding agencies.  相似文献   

7.
Most incremental mining and online mining algorithms concentrate on finding association rules or patterns consistent with entire current sets of data. Users cannot easily obtain results from only interesting portion of data. This may prevent the usage of mining from online decision support for multidimensional data. To provide ad-hoc, query-driven, and online mining support, we first propose a relation called the multidimensional pattern relation to structurally and systematically store context and mining information for later analysis. Each tuple in the relation comes from an inserted dataset in the database. We then develop an online mining approach called three-phase online association rule mining (TOARM) based on this proposed multidimensional pattern relation to support online generation of association rules under multidimensional considerations. The TOARM approach consists of three phases during which final sets of patterns satisfying various mining requests are found. It first selects and integrates related mining information in the multidimensional pattern relation, and then if necessary, re-processes itemsets without sufficient information against the underlying datasets. Some implementation considerations for the algorithm are also stated in detail. Experiments on homogeneous and heterogeneous datasets were made and the results show the effectiveness of the proposed approach.  相似文献   

8.
Discovering patterns with great significance is an important problem in data mining discipline. An episode is defined to be a partially ordered set of events for consecutive and fixed-time intervals in a sequence. Most of previous studies on episodes consider only frequent episodes in a sequence of events (called simple sequence). In real world, we may find a set of events at each time slot in terms of various intervals (hours, days, weeks, etc.). We refer to such sequences as complex sequences. Mining frequent episodes in complex sequences has more extensive applications than that in simple sequences. In this paper, we discuss the problem on mining frequent episodes in a complex sequence. We extend previous algorithm MINEPI to MINEPI+MINEPI+ for episode mining from complex sequences. Furthermore, a memory-anchored algorithm called EMMA is introduced for the mining task. Experimental evaluation on both real-world and synthetic data sets shows that EMMA is more efficient than MINEPI+MINEPI+.  相似文献   

9.
DRFP-tree: disk-resident frequent pattern tree   总被引:4,自引:3,他引:1  
Frequent itemset mining methods basically address time scalability and greatly rely on available physical memory. However, the size of real-world databases to be mined is exponentially increasing, and hence main memory size is a serious bottleneck of the existing methods. So, it is necessary to develop new methods that do not fully rely on physical memory; new methods that utilize the secondary storage in the mining process should be the target. This motivates the work described in this paper; we mainly propose (Disk Resident Frequent Pattern) DRFP-Growth as a disk based approach similar to FP-Growth. DRFP-growth uses DRFP-tree, which is treated exactly as FP-tree when constructed in main memory and gets into a modified structure when it turns into disk resident to overcome the main memory bottleneck. This way, we are able to mine for frequent itemsets from databases of arbitrary sizes without being restricted by the available physical memory. In other words, we initially try to mine the database using the original FP-growth; we expand into the secondary memory only if we run out of physical memory. So, DRFP-growth is very comparable to FP-growth for small databases and high support threshold values. On the other hand, using DRFP-growth, we are still able to mine huge databases for low support threshold values (the only limitation is the available secondary storage rather than physical memory). The reported test results demonstrate how the proposed approach succeeds for cases where main memory based approaches fail.  相似文献   

10.
Computing the minimum-support for mining frequent patterns   总被引:4,自引:4,他引:0  
Frequent pattern mining is based on the assumption that users can specify the minimum-support for mining their databases. It has been recognized that setting the minimum-support is a difficult task to users. This can hinder the widespread applications of these algorithms. In this paper we propose a computational strategy for identifying frequent itemsets, consisting of polynomial approximation and fuzzy estimation. More specifically, our algorithms (polynomial approximation and fuzzy estimation) automatically generate actual minimum-supports (appropriate to a database to be mined) according to users’ mining requirements. We experimentally examine the algorithms using different datasets, and demonstrate that our fuzzy estimation algorithm fittingly approximates actual minimum-supports from the commonly-used requirements. This work is partially supported by Australian ARC grants for discovery projects (DP0449535, DP0559536 and DP0667060), a China NSF Major Research Program (60496327), a China NSF grant (60463003), an Overseas Outstanding Talent Research Program of the Chinese Academy of Sciences (06S3011S01), and an Overseas-Returning High-level Talent Research Program of China Human-Resource Ministry. A preliminary and shortened version of this paper has been published in the Proceedings of the 8th Pacific Rim International Conference on Artificial Intelligence (PRICAI ’04).  相似文献   

11.
Node-list and N-list, two novel data structure proposed in recent years, have been proven to be very efficient for mining frequent itemsets. The main problem of these structures is that they both need to encode each node of a PPC-tree with pre-order and post-order code. This causes that they are memory-consuming and inconvenient to mine frequent itemsets. In this paper, we propose Nodeset, a more efficient data structure, for mining frequent itemsets. Nodesets require only the pre-order (or post-order code) of each node, which makes it saves half of memory compared with N-lists and Node-lists. Based on Nodesets, we present an efficient algorithm called FIN to mining frequent itemsets. For evaluating the performance of FIN, we have conduct experiments to compare it with PrePost and FP-growth1, two state-of-the-art algorithms, on a variety of real and synthetic datasets. The experimental results show that FIN is high performance on both running time and memory usage.  相似文献   

12.
Mining frequent sequences in large databases has been an important research topic. The main challenge of mining frequent sequences is the high processing cost due to the large amount of data. In this paper, we propose a novel strategy to find all the frequent sequences without having to compute the support counts of non-frequent sequences. The previous works prune candidate sequences based on the frequent sequences with shorter lengths, while our strategy prunes candidate sequences according to the non-frequent sequences with the same lengths. As a result, our strategy can cooperate with the previous works to achieve a better performance. We then identify three major strategies used in the previous works and combine them with our strategy into an efficient algorithm. The novelty of our algorithm lies in its ability to dynamically switch from a previous strategy to our new strategy in the mining process for a better performance. Experiment results show that our algorithm outperforms the previous ones under various parameter settings. This paper is a major-value added version of the following paper: D. Y. Chiu, Y. H. Wu, A. L. P. Chen, “An Efficient Algorithm for Mining Frequent Sequences by a New Strategy without Support Counting,” Proceedings of IEEE Data Engineering Conference, pp. 375–386, 2004.  相似文献   

13.
Sliding window-based frequent pattern mining over data streams   总被引:2,自引:0,他引:2  
Finding frequent patterns in a continuous stream of transactions is critical for many applications such as retail market data analysis, network monitoring, web usage mining, and stock market prediction. Even though numerous frequent pattern mining algorithms have been developed over the past decade, new solutions for handling stream data are still required due to the continuous, unbounded, and ordered sequence of data elements generated at a rapid rate in a data stream. Therefore, extracting frequent patterns from more recent data can enhance the analysis of stream data. In this paper, we propose an efficient technique to discover the complete set of recent frequent patterns from a high-speed data stream over a sliding window. We develop a Compact Pattern Stream tree (CPS-tree) to capture the recent stream data content and efficiently remove the obsolete, old stream data content. We also introduce the concept of dynamic tree restructuring in our CPS-tree to produce a highly compact frequency-descending tree structure at runtime. The complete set of recent frequent patterns is obtained from the CPS-tree of the current window using an FP-growth mining technique. Extensive experimental analyses show that our CPS-tree is highly efficient in terms of memory and time complexity when finding recent frequent patterns from a high-speed data stream.  相似文献   

14.
虽然FP-Growth算法能够有效地从数据库中挖掘频繁模式,但如何由其挖掘出的频繁模式中高效地产生关联规则仍是一个相当复杂的问题。该文提出了用于组织频繁模式的线索频繁模式树(TFPT)和一个从TFPT中挖掘关联规则的高效算法—最短模式优先算法(SPF)。挖掘模式Y的关联规则时,SPF算法应用了两个优化策略,避免了对大量的不可能成为规则XY-X左部的Y的子集的检查,从而获得了很好的性能。实验表明:与类FP-Growth算法结合时,SPF算法运行速度远远快于Apriori算法,并有相当好的可伸缩性。  相似文献   

15.
In recent years, data stream mining has become an important research topic. With the emergence of new applications, the data we process are not again static, but the continuous dynamic data stream. Examples include network traffic analysis, Web click stream mining, network intrusion detection, and on-line transaction analysis. In this paper, we propose a new framework for data stream mining, called the weighted sliding window model. The proposed model allows the user to specify the number of windows for mining, the size of a window, and the weight for each window. Thus users can specify a higher weight to a more significant data section, which will make the mining result closer to user’s requirements. Based on the weighted sliding window model, we propose a single pass algorithm, called WSW, to efficiently discover all the frequent itemsets from data streams. By analyzing data characteristics, an improved algorithm, called WSW-Imp, is developed to further reduce the time of deciding whether a candidate itemset is frequent or not. Empirical results show that WSW-Imp outperforms WSW under the weighted sliding window model.  相似文献   

16.
挖掘关联规则是数据挖掘领域的一个重要研究方向,人们已经提出了许多用于发现数据库中关联规则的算法,但对关联规则的增量维护问题的研究较少.深入分析了增量更新情况,使用了目前较高效的最大频繁模式挖掘算法FP-Max,并对其进行改进.基本思想:①基于FP-树;②考虑了数据集中,数据增加情况下FP-树的更新;③对FP-Max算法进行改进来更新、维护已经挖掘出来的最大频繁模式.  相似文献   

17.
一种直接在Trans-树中挖掘频繁模式的新算法   总被引:5,自引:1,他引:5  
范明  王秉政 《计算机科学》2003,30(8):117-120
Frequent pattern mining plays an essential role in many important data mining tasks. FP-growth is a very efficient algorithm for frequent pattern mining. However, it still suffers from creating conditional FP-tree separately and recursively during the mining process. In this paper, we propose a new algorithm, called Least-Item-First Pat-tern Growth (LIFPG), for mining frequent patterns. LIFPG mines frequent patterns directly in Trans-tree withoutusing any additional data structures. The key idea is that least items are always considered first when the current pat-tern growth. By this way, conditional sub-tree can be created directly in Trans-tree by adjusting node-links and re-counting counts of some nodes. Experiments show that, in comparison with FP-Growth, our algorithm is about fourtimes faster and saves half of memory;it also has good time and space scalability with the number of transactions,and has an excellent performance in dense dataset mining as well.  相似文献   

18.
Frequent pattern mining is an essential theme in data mining. Existing algorithms usually use a bottom-up search strategy. However, for very high dimensional data, this strategy cannot fully utilize the minimum support constraint to prune the rowset search space. In this paper, we propose a new method called top-down mining together with a novel row enumeration tree to make full use of the pruning power of the minimum support constraint. Furthermore, to efficiently check if a rowset is closed, we develop a method called the trace-based method. Based on these methods, an algorithm called TD-Close is designed for mining a complete set of frequent closed patterns. To enhance its performance further, we improve it by using new pruning strategies and new data structures that lead to a new algorithm TTD-Close. Our performance study shows that the top-down strategy is effective in cutting down search space and saving memory space, while the trace-based method facilitates the closeness-checking. As a result, the algorithm TTD-Close outperforms the bottom-up search algorithms such as Carpenter and FPclose in most cases. It also runs faster than TD-Close.  相似文献   

19.
Mining frequent itemsets from transactional data streams is challenging due to the nature of the exponential explosion of itemsets and the limit memory space required for mining frequent itemsets. Given a domain of I unique items, the possible number of itemsets can be up to 2I − 1. When the length of data streams approaches to a very large number N, the possibility of an itemset to be frequent becomes larger and difficult to track with limited memory. The existing studies on finding frequent items from high speed data streams are false-positive oriented. That is, they control memory consumption in the counting processes by an error parameter ?, and allow items with support below the specified minimum support s but above s − ? counted as frequent ones. However, such false-positive oriented approaches cannot be effectively applied to frequent itemsets mining for two reasons. First, false-positive items found increase the number of false-positive frequent itemsets exponentially. Second, minimization of the number of false-positive items found, by using a small ?, will make memory consumption large. Therefore, such approaches may make the problem computationally intractable with bounded memory consumption. In this paper, we developed algorithms that can effectively mine frequent item(set)s from high speed transactional data streams with a bound of memory consumption. Our algorithms are based on Chernoff bound in which we use a running error parameter to prune item(set)s and use a reliability parameter to control memory. While our algorithms are false-negative oriented, that is, certain frequent itemsets may not appear in the results, the number of false-negative itemsets can be controlled by a predefined parameter so that desired recall rate of frequent itemsets can be guaranteed. Our extensive experimental studies show that the proposed algorithms have high accuracy, require less memory, and consume less CPU time. They significantly outperform the existing false-positive algorithms.  相似文献   

20.
Mining frequent patterns with a frequent pattern tree (FP-tree in short) avoids costly candidate generation and repeatedly occurrence frequency checking against the support threshold. It therefore achieves much better performance and efficiency than Apriori-like algorithms. However, the database still needs to be scanned twice to get the FP-tree. This can be very time-consuming when new data is added to an existing database because two scans may be needed for not only the new data but also the existing data. In this research we propose a new data structure, the pattern tree (P-tree in short), and a new technique, which can get the P-tree through only one scan of the database and can obtain the corresponding FP-tree with a specified support threshold. Updating a P-tree with new data needs one scan of the new data only, and the existing data does not need to be re-scanned. Our experiments show that the P-tree method outperforms the FP-tree method by a factor up to an order of magnitude in large datasets. A preliminary version of this paper has been published in theProceedings of the 2002 IEEE International Conference on Data Mining (ICDM ’02), 629–632. Hao Huang: He is pursuing his Ph.D. degree in the Department of Computer Science at the University of Virginia. His research interests are Gird Computing, Data Mining and their applications in Bioinformatics. He received his M.S. in Computer Science from Colorado School of Mines in 2001. Xindong Wu, Ph.D.: He is Professor and Chair of the Department of Computer Science at the University of Vermont, USA. He holds a Ph.D. in Artificial Intelligence from the University of Edinburgh, Britain. His research interests include data mining, knowledge-based systems, and Web information exploration. He has published extensively in these areas in various journals and conferences, including IEEE TKDE, TPAMI, ACM TOIS, IJCAI, AAAI, ICML, KDD, ICDM, and WWW. Dr. Wu is the Executive Editor (January 1, 1999-December 31, 2004) and an Honorary Editor-in-Chief (starting January 1, 2005) of Knowledge and Information Systems (a peer-reviewed archival journal published by Springer), the founder and current Steering Committee Chair of the IEEE International Conference on Data Mining (ICDM), a Series Editor of the Springer Book Series on Advanced Information and Knowledge Processing (AI&KP), and the Chair of the IEEE Computer Society Technical Committee on Computational Intelligence (TCCI). He served as an Associate Editor for the IEEE Transactions on Knowledge and Data Engineering (TKDE) between January 1, 2000 and December 31, 2003, and is the Editor-in-Chief of TKDE since January 1, 2005. He is the winner of the 2004 ACM SIGKDD Service Award. Richard Relue, Ph.D.: He received his Ph.D. in Computer Science from the Colorado School of Mines in 2003. His research interests include association rules in data mining, neural networks for automated classification, and artificial intelligence for robot navigation. He has been an Information Technology consultant since 1992, working with Ball Aerospace and Technology, Rational Software, Natural Fuels Corporation, and Western Interstate Commission for Higher Education (WICHE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号