首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multicolor spectral karyotyping (SKY) was performed on bone marrow samples from 50 patients with multiple myeloma (MM) in anticipation of discovering new previously unidentified translocations. All samples showed complex karyotypes with chromosome aberrations which, in most cases, were not fully characterized by G-banding. Patients of special interest were those who showed add(14)(q32), add(8)(q24) and those whose G-banding karyotypes showed poor chromosome morphology. Three new recurring chromosome translocations not previously reported in MM were identified. Two of the translocations involve recurring aberrations at band 14q32.3, the site of the IgH locus, with different exchange partners. The most frequently recurring rearrangement was a subtle translocation at 14q32.3 designated as a t(14;16)(q32;q22 approximately 23), which was identified in six patients. A second and larger translocation at 14q32, identified in two patients, was designated as a t(9;14)(p13;q32), previously associated with Waldenstrom's macroglobulinemia and lymphoplasmacytoid lymphoma. A third translocation, identified in two patients, involved a whole-arm t(6;8)(p10;q10) translocation. The SKY technique was able to refine the designations of over 156 aberrations not fully characterized by G-banding in this study and resolved additional chromosome aberrations in every patient studied except two. The t(14;16)(q32;q22 approximately 23) identified by SKY in this study suggests this may be a frequent translocation in MM associated with complex karyotypes and disease progression. Therefore, the SKY technique provides a useful adjunct to routine G-banding and fluorescence in situ hybridization studies in the cytogenetic analysis of MM.  相似文献   

2.
PURPOSE: Nonrandom chromosomal translocations are frequently observed in pediatric patients with acute lymphoblastic leukemia (ALL). Specific translocations, such as t(4;11) and t(9;22), identify subgroups of B-lineage ALL patients who have an increased risk of treatment failure. The current study was conducted to determine the prognostic significance of chromosomal translocations in T-lineage ALL patients. MATERIALS AND METHODS: The study included 169 children with newly diagnosed T-lineage ALL enrolled between 1988 and 1995 on risk-adjusted protocols of the Children's Cancer Group (CCG) who had centrally reviewed cytogenetics data. Outcome analyses used standard life-table methods. RESULTS: Presenting features for the current cohort were similar to those of concurrently enrolled patients for whom cytogenetic data were not accepted on central review. The majority of patients (80.5%) were assigned to CCG protocols for high-risk ALL and 86.4% had pseudodiploid (n = 80) or normal diploid (n = 66) karyotypes; modal chromosome number was not a significant prognostic factor. Overall, 103 of 169 (61%) patients had an abnormal karyotype, including 31 with del(6q), 29 with 14q11 breakpoints, 15 with del(9p), 11 with trisomy 8, nine with 11q23 breakpoints, nine with 14q32 translocations, and eight with 7q32-q36 breakpoints. Thirteen patients had the specific 14q11 translocation t(11;14)(p13;q11) and all were classified as poor risk. Patients with any of these translocations had outcomes similar to those with normal diploid karyotypes. CONCLUSION: Chromosomal abnormalities, including specific nonrandom translocations, were frequently observed in a large group of children with T-lineage ALL, but were not significant prognostic factors for this cohort. Thus, contemporary intensive treatment programs result in favorable outcomes for the majority of T-lineage ALL patients, regardless of karyotypic abnormalities, and such features do not identify patients at higher risk for relapse.  相似文献   

3.
We revisited the cytogenetic alterations of the cervical adenocarcinoma cell line HeLa through the use of spectral karyotyping (SKY), comparative genomic hybridization (CGH), and fluorescence in situ hybridization (FISH). SKY analysis unequivocally characterized all abnormal chromosomes. Chromosomal breakpoints were primarily assigned by simultaneous assessment of SKY painted chromosomes and inverted 4,6-diamidino2-phenylindole banding from the same cell. Twenty clonally abnormal chromosomes were found. Comparison with previously reported HeLa G-banding karyotypes revealed a remarkably stable cytogenetic constitution because 18 of 20 markers that were found were present before. The classification of 12 markers was refined in this study. Our assignment of the remaining six markers was consistent with those described in the literature. The CGH map of chromosomal copy number gains and losses strikingly matched the SKY results and was, in a few instances, decisive for assigning breakpoints. The combined use of molecular cytogenetic methods SKY, CGH, and FISH with site-specific probes, in addition to inverted 4,6-diamidino-2-phenylindole or conventional G-banding analysis, provides the means to fully assess the genomic abnormalities in cancer cells. Human papillomaviruses (HPVs) are frequently integrated into the cellular DNA in cervical cancers. We mapped by FISH five HPV18 integration sites: three on normal chromosomes 8 at 8q24 and two on derivative chromosomes, der(5)t(5;22;8)(qll;q11q13;q24) and der(22)t(8; 22)(q24;q13), which have chromosome 8q24 material. An 8q24 copy number increase was detected by CGH. Dual-color FISH with a c-MYC probe mapping to 8q24 revealed colocalization with HPV18 at all integration sites, indicating that dispersion and amplification of the c-MYC gene sequences occurred after and was most likely triggered by the viral insertion at a single integration site. Numerical and structural chromosomal aberrations identified by SKY, genomic imbalances detected by CGH, as well as FISH localization of HPV18 integration at the c-MYC locus in HeLa cells are common and representative for advanced stage cervical cell carcinomas. The HeLa genome has been remarkably stable after years of continuous cultivation; therefore, the genetic alterations detected may have been present in the primary tumor and reflect events that are relevant to the development of cervical cancer.  相似文献   

4.
Centrocytic lymphoma (CC) and intermediately differentiated lymphocytic lymphoma (IDL) are B-cell non-Hodgkin's lymphomas composed of lymphocytes presumably derived from follicle mantle cells. In these lymphomas, a specific chromosomal translocation, t(11;14)(q13;q32), has been described. Previous studies suggested an association between t(11;14) chromosomal translocations and BCL-1 rearrangements. To evaluate the association between BCL-1 rearrangements and CC/IDL, Southern blot analysis was performed on a panel of 20 cases of CC/IDL, 22 cases of morphologically similar non-Hodgkin's lymphomas, 11 cases of chronic B-cell leukemias, and 2 cases of myelomas. We used various probes covering a considerable proportion of the 120-kilobase BCL-1 locus, and rearrangements in 50% of CC/IDL (10 of 20) were detected. In CC, all 4 breakpoints were located at the major translocation cluster (MTC). In contrast, in IDL, rearrangements were detected in 3 different cluster regions: 2 cases in the MTC, 2 cases with a breakpoint 24 kilobases outside the MTC, and 2 additional cases with breakpoints found 3 kilobases 5' of the first exon of the PRAD1/CCND1 gene, which is located 120 kilobases outside the MTC. In addition, one leukemia showed a breakpoint 63 kilobases outside the MTC. In all cases, there was comigration of the rearranged 11q13 fragment and the immunoglobulin heavy chain-joining gene complex, indicating a t(11;14)(q13;q32) chromosomal rearrangement. Our results show that Southern blot analysis is helpful to identify CC/IDL, but multiple breakpoints are present over a large region, and therefore, many probes are necessary to cover all breakpoints.  相似文献   

5.
BACKGROUND: Acquired immunodeficiency syndrome-related non-Hodgkin's lymphomas are associated with the B-cell chromosomal translocation t(8;14)(q24; q32). The most common secondary chromosome aberrations in these patients involve 1q and are believed to be associated with tumor progression. A mechanism for the origin of these 1q aberrations has not been demonstrated. To their knowledge, the authors report the first human immunodeficiency virus (HIV)-positive patient to have centromeric decondensation and multibranched chromosome aberrations of chromosomes 1 and 16 resulting in telomeric associations and "jumping translocations" of 1q. METHODS: Tumor cells from peritoneal fluid of an HIV-positive patient were cultured for 24, 48, and 72 hours and analyzed by both conventional G-banding and fluorescence in situ hybridization. RESULTS: G-band analysis showed a stemline with t(8;14)(q24;q32), but also showed the progression from centromeric decondensation to multibranched chromosome configurations of chromosomes 1 and 16. The interchange and duplications of chromosome arms resulted in the gain of extra copies of 1q material on a number of different chromosomes, but also the loss of 16q in at least one sideline and the formation of micronuclei. Fluorescence in situ hybridization analysis demonstrated that micronuclei predominantly involved chromosome 1 and, to a lesser extent, chromosome 16. CONCLUSIONS: The cytogenetic findings in this unique case suggest that immunodeficiency may be a factor involved in centromeric instability, multibranching, and the progression to the subsequent formation of telomeric fusions and multiple unbalanced translocations of 1q (jumping translocations). The striking similarity of the centromeric instability in this patient to those with ICF syndrome (variable immunodeficiency, centromeric heterochromatin instability, and facial anomalies) suggests hypomethylation as the etiologic mechanism for the chromosome instability.  相似文献   

6.
The t(11;14)(q13;q32) chromosomal translocation, which is the hallmark of mantle cell lymphoma (MCL), is found in approximately 30% of multiple myeloma (MM) tumors with a 14q32 translocation. Although the overexpression of cyclin D1 has been found to be correlated with MM cell lines carrying the t(11;14), rearrangements of the BCL-1/cyclin D1 regions frequently involved in MCL rarely occur in MM cell lines or primary tumors. To test whether specific 11q13 breakpoint clusters may occur in MM, we investigated a representative panel of primary tumors by means of Southern blot analysis using probes derived from MM-associated 11q13 breakpoints. To this end, we first cloned the breakpoints and respective germ-line regions from a primary tumor and the U266 cell line, as well as the germ-line region from the KMS-12 cell line. DNA from 50 primary tumors was tested using a large panel of probes, but a rearrangement was detected in only one case using the KMS-12 breakpoint probe. Our results confirm previous findings that the 11q13 breakpoints in MM are scattered throughout the 11q13 region encompassing the cyclin D1 gene, thus suggesting the absence of 11q13 breakpoint clusters in MM.  相似文献   

7.
Characterization of chromosome abnormalities in leukemia and lymphoma have contributed to the understanding of the molecular basis of these neoplastic diseases. In addition, specific chromosomal aberrations have acquired diagnostic or prognostic value. The t(11;14)(q13;q32) chromosome translocation has been detected in mantle cell lymphomas. However, possibly due to the limits of conventional cytogenetic analysis and the presence of different breakpoints at the molecular level, it is possible that the true percentage of association is underestimated. In our study, we used a yeast artificial chromosome, spanning the entire area where the rearrangements occur on chromosome 11q13, to detect the presence of translocations by fluorescent in situ hybridization experiments. We detected BCL-1 translocations in eight of eight patients with clinical and immunological features of mantle cell lymphoma, suggesting that the t(11;14) translocation is a critical event in the pathogenesis of MCL and may be a primary element for the diagnosis. Since this translocation is associated with poor prognosis, its detection may help to make a correct diagnosis as well as to evaluate residual disease, which is critical to plan a rational chemotherapy regimen.  相似文献   

8.
A new cell line with megakaryoblastic features, designated UoC-M1, was established from the malignant cells of a 68-year-old patient with acute myeloid leukemia. The patient's leukemic cells reacted with alpha-naphthyl acetate esterase and acid phosphatase and expressed CD7, CD24, CD34, CD38, CD45, HLA-DR and CD61. Cytogenetic analysis of the patient's malignant cells (and of the UoC-M1 cells) showed a human, male hypodiploid karyotype with many chromosome rearrangements and marker chromosomes. Spectral karyotyping (SKY) analysis complemented the G-banded karyotyping and clarified several chromosomal translocations and identified the marker chromosomes. Fluorescence in situ hybridization (FISH) and SKY analysis demonstrated that one marker chromosome contained three segments of chromosome 9 interspersed with three segments of chromosome 11, as well as a portion of chromosome 19. FISH analysis with a probe for MLL revealed that the UoC-M1 cells contained four copies of the MLL gene. Southern blot analysis determined that the MLL gene had a germline profile while Northern and Western analyses showed that the MLL mRNAs and protein were of the appropriate sizes. This is the first report of amplification of the MLL gene which may be an additional mechanism of leukemogenesis or disease progression.  相似文献   

9.
We report the use of dual-colour chromosome painting to determine the exact nature of certain chromosome rearrangements observed in the pig (Sus scrofa domestica). The chromosomal abnormalities were detected by GTG- and RBG-banding techniques. The initially proposed interpretations were: (1) rcp(6;13)(p1.5;q4.1); (2) rcp(11;16)(p1.4;q1.4); (3) rcp(6;16)(p1.1;q1.1); (4) rcp(13;17)(q4.1;q1.1); (5) rcp(6;14)(q2.7;q2.1); (6) rcp(3;5)(p1.3;q2.3); (7) rcp(2; 14)(q1.3;q2.7); (8) rcp(15;17)(q1.3;q2.1). Hybridizations were carried out with biotin- and digoxigenin-labelled probes obtained by priming authorizing random mismatches polymerase chain reaction (PARM-PCR) amplification of porcine flow-sorted chromosomes. In some cases, i.e. (1), (4), (5), (6), (7) and (8), the fluorescence in situ hybridization (FISH) results allowed confirmation of the interpretations proposed with classical cytogenetic methods. Chromosome painting proved the reciprocity of the translocation in cases (1), (6) and (8), whereas modifications of the formula were proposed for case (2). Primed in situ DNA labelling (PRINS) experiments have also been carried out in case (3) using a primer specific for the centromeres of acrocentric chromosomes (first experiment) or a primer specific for the centromeres of a subset of meta- and submetacentric chromosomes including chromosome 6 (second experiment). It allowed us to demonstrate that the breakpoints occurred in the centromeric region of chromosome 16 and in the p. arm of chromosome 6, just above the centromere.  相似文献   

10.
Chromosome rearrangement of 14q32.33 has recurrently occurred with variable partner sites, including 11q13.3, 8q24.1, 18q21.3, and 6p21.1 in multiple myeloma (MM). To assess the actual incidence of 14q32.33 translocation and to elucidate its implication in the pathogenesis of MM, we studied 42 patients with MM, plasma cell leukemia, or plasmacytoma and 5 with monoclonal gammopathy with undetermined significance (MGUS) by G-banding and molecular cytogenetic methods. Using double-color fluorescence in situ hybridization (DCFISH) with 2 Ig heavy chain (IgH) gene probes, a yeast artificial chromosome (YAC) clone containing variable region, and a phage clone containing gamma constant region, 14q32.33 translocation was detected as split signals of the IgH gene in 31 patients with plasma cell malignancies and 3 with MGUS. In contrast, of 40 patients who were assessed by G-banding, 3 (7.5%) showed the 14q+ chromosome. DCFISH detected a split of the IgH gene on interphase nuclei in 34 (73.9%) of 46 patients analyzed, whereas on metaphase spreads, it was in 22 (51.2%) of 43 patients analyzed. Interphase DCFISH was particularly useful to detect 14q32.33 translocation in 17 (65.4%) of 26 patients with normal karyotypes. Donor sites were identified in 11 of 22 patients demonstrated as carrying 14q32.33 translocation by metaphase FISH. Chromosome t(11;14)(q13.3; q32.33) was detected in 5 patients, t(8;14)(q24.1;q32.33) in 2, t(14;18)(q32.33;q21.3) in 2, and t(7;14)(q32.1;q32.33) in 1. A complex 14q32.33 translocation involving 3q and 16q24 was detected in 1 patient. Myeloma cells with t(7;14) showed myelomonocytoid surface antigen. Because rearrangements of 14q32.33 were closely associated with translocation of proto-oncogenes into the IgH gene, our findings indicate that 14q32.33 translocation with various partner chromosomes is a critical event in the pathogenesis of MM and MGUS.  相似文献   

11.
Southern blot analysis was performed with a panel of DNA probes to detect rearrangements of c-myc, bcl-1, bcl-2 and bcl-3 in 14 cases of B-cell non-Hodgkin's lymphoma (NHL) with a clonal cytogenetic rearrangement involving the chromosome 14q32 locus and no known donor chromosome [t(14;?)(q32;?)]. In our experience, 21% of all chromosomal abnormalities involving the 14q32 locus in B-cell NHL are of this type. We found oncogene rearrangements in five of the 14 cases: bcl-1 rearrangement on one mantle zone lymphoma, bcl-2 rearrangements in two follicular lymphomas, and c-myc rearrangements in two small noncleaved cell lymphomas. We conclude that a 14q32+ abnormality of unknown origin is a relatively frequent karyotypic finding in B-cell NHL. In one third of the cases, known oncogenes that have been previously described in reciprocal translocations involving the immunoglobulin heavy chain locus were shown to be involved in the 14q32+ abnormality. The translocations in the other cases are likely to have involved one of the above oncogenes with breakpoints not revealed by the probes employed, other known oncogenes, or oncogenes that have not yet been identified.  相似文献   

12.
Fluorescence in situ hybridization (FISH) using chromosome-specific DNA libraries as painting probes, locus-specific unique sequence (cosmid) probes, and Y-specific repetitive sequences was applied in the analysis of eighteen cases of chromosomal rearrangements of undetermined nature. FISH clarified the origin of the extra or translocated chromosome segments in seventeen patients, one with 2q+, two with 4q+, one each with 6p+, 7p+, 9q+, 10p+, 11q+ and 12p+, two with 13q+, and one each with 15q+, 17p+, 18p+, 20p+, 21p+ and Yq+, as well as the nature of a de novo supernumerary chromosome marker in a previously reported case. By G-banding and molecular cytogenetic studies of the family members, six cases were determined to have unbalanced translocations inherited from the carrier parent. The extra translocated genetic material may cause specific trisomic syndromes, including partial 6p21.3-p23, 9q32-q34.3, 13q32-q34, 15q24-q26, and 17p11.2-p13 trisomies in those patients. A translocated 21q segment on 12p was shown by a painting probe in a patient with Down features. A patient with cat cry syndrome resulting from a loss of the terminal segment of the short arm of chromosome 5 was confirmed by a cosmid probe showing de novo reciprocal translocation between chromosomes 5 and 18:t(5;18) (p13.3;p11.31). With FISH, the extra material on the rearranged chromosome could also be identified as duplicated or translocated. The FISH technique thus provides a method for the analysis of extra structurally abnormal chromosomes (especially in de novo cases), recognizable syndromes (contiguous gene syndromes) caused by translocated deletion from parental balanced chromosome rearrangements, and supernumerary marker chromosomes. FISH subsequent to G-banding is also of great help in the confirmation of preliminary abnormal G-banded karyotypes after a modified destaining procedure. In conclusion, the combination of G-banding and FISH is very useful in the accurate diagnosis of chromosomal rearrangements.  相似文献   

13.
Primary extranodal malignant non-Hodgkin's lymphoma arising from the mucosa-associated lymphoid tissue (MALT-type lymphoma) represents a subtype of B-cell lymphoid malignancies with distinct clinicopathological features and is often associated with a favorable prognosis. Unlike the situation in nodal non-Hodgkin's lymphoma of B-cell lineage, few data are still available concerning the chromosomal constitution of MALT-type lymphomas. Until now, cytogenetic data from 29 low-grade MALT lymphomas with karyotypic alterations have been reported from different institutions, and virtually no data were available for high-grade MALT-type lymphomas. We have analyzed the cytogenetics of 44 MALT lymphomas arising in the stomach, parotid gland, thyroid gland, lung, breast, and conjunctiva. Clonal chromosome aberrations have been detected in 13 of 20 (65%) low-grade and 20 of 24 (83%) high-grade tumors. More than half of the low-grade lymphomas with abnormal karyotypes (7 of 13 cases, 53%) displayed clonal t(11;18)(q21;q21), thus specifically associating this translocation with MALT-type lymphomas for the first time in a larger series. In contrast, t(11;18) was not found in a single case of 20 high-grade MALT-type lymphomas with abnormal karyotypes, nor were translocations t(14;18) or t(3;14), characterizing about 10-35% of primary nodal large cell lymphomas. Instead, these lymphomas were associated with t(8;14)(q24;q32) in three cases, frequent deletions in the long arm of chromosome 6, and partial or whole gains of chromosomes 3, 7, 17, 18, and 21.  相似文献   

14.
15.
目的 研究多发性骨髓瘤(MM)常见的分子遗传学异常14q32易位与13q14缺失及其与临床指标的关系.方法 采用间期荧光原位杂交(I-FISH)技术应用RB1、D13S319和LSI IGHC/IGHV探针检测49例MM患者骨髓标本中RB1基因、13q14.3缺失及14q32易位,结合临床资料作统计分析.结果 49例MM患者有26例(53.1%)检测到14q32易位,25例(51.02%)存在13q14缺失(其中18例检测到13q14.3缺失,9例存在RB1缺失).Spearman相关分析显示,14q32易位多见于浆细胞比例高的患者(r=0.316,P=0.27),与患者年龄、国际分期系统(ISS)分期、免疫球蛋白分型、β2微球蛋白及肾损害无相关性(P>0.05).结论 13q14缺失及14q32相关的易位在MM中发生率均较高,两者有密切相关性;14q32易位的MM患者浆细胞百分比明显升高,14q32易位的检测可作为预测MM预后的指标.  相似文献   

16.
Tumor specific chromosomal abnormalities have been identified in several histologic subtypes of benign and malignant bone tumors. These anomalies have proven to be useful diagnostically. Characterization of recurrent chromosomal abnormalities also has provided direction for molecular investigations of pathogenetically important genes. Cytogenetic reports of chondroblastoma, a rare benign bone tumor, are few. Cytogenetic analysis of a benign and a malignant chondroblastoma in this study revealed the following abnormal chromosomal complements: 47,XY,+5,t(5;5)(p10;q10) and 45, XY,del(2)(p23),del(3)(q23q27),dup(8)(q12q21.), del(11) (q14q23), -13, add (17) (q25) x 2, respectively. Although a specific chromosomal abnormality has not yet emerged for chondroblastoma, abnormalities of chromosomes 5 and 8 have been reported previously in this neoplasm, suggesting preferential involvement of these two chromosomes.  相似文献   

17.
Twenty-nine nonendocrine pancreatic carcinomas (20 primary tumors and nine metastases) were studied by chromosome banding after short-term culture. Acquired clonal aberrations were found in 25 tumors and a detailed analysis of these revealed extensive cytogenetic intratumor heterogeneity. Apart from six carcinomas with one clone only, 19 tumors displayed from two to 58 clones, bringing the total number of clones to 230. Karyotypically related clones, signifying evolutionary variation, were found in 16 tumors, whereas unrelated clones were present in nine, the latter finding probably reflecting a distinct pathogenetic mechanism. The cytogenetic profile of pancreatic carcinoma was characterized by multiple numerical and structural changes. In total, more than 500 abnormal chromosomes, including rings, markers, homogeneously stained regions, and double minutes, altogether displaying 608 breakpoints, were detected. This complexity and heterogeneity notwithstanding, a nonrandom karyotypic pattern can be discerned in pancreatic cancer. Chromosomes 1, 3, 6, 7, 8, 11, 12, 17, and 19 and bands 1q12, 1q21, 3q11, 6p21, 6q21, 7q11, 7q22, 7q32, 11q13, 13cen, 14cen, 17q11, 17q21, and 19q13 were most frequently involved in structural rearrangements. A total of 19 recurrent unbalanced structural changes were identified, 11 of which were not reported previously: del(1)(q11), del(3)(p11), i(3)(q10), del(4)(q25), del(11)(p13), dup(11)(q13q23), i(12)(p10), der(13;15)(q10;q10), del(18)(q12), del(18)(q21), and i(19)(q10). The main karyotypic imbalances were entire-copy losses of chromosomes 18, Y, and 21, gains of chromosomes 7, 2, and 20, partial or whole-arm losses of 1p, 3p, 6q, 8p, 9p, 15q, 17p, 18q, 19p, and 20p, and partial or whole-arm gains of 1q, 3q, 5p, 6p, 7q, 8q, 11q, 12p, 17q, 19q, and 20q. In general, the karyotypic pattern of pancreatic carcinoma fits the multistep carcinogenesis concept. The observed cytogenetic heterogeneity appears to reflect a multitude of interchangeable but oncogenetically equivalent events, and the nonrandomness of the chromosomal alterations underscores the preferential pathways involved in tumor initiation and progression.  相似文献   

18.
19.
The t(11;14)(q13;q32) and its molecular counterpart, BCL1 rearrangement, are consistent features of mantle cell lymphoma (MCL). Rearrangement is thought to deregulate the nearby CCND1 (BCL1/PRAD1) proto-oncogene, a member of the cyclin G1 gene family, and thereby to contribute to tumorigenesis. We and others have previously shown that the BCL1 locus is rearranged in 55% to 60% of MCL patients and that, on chromosome 11, more than 80% of the breakpoints are localized within a 1-kbp DNA segment known as the major translocation cluster (MTC). We have determined the nucleotide sequence for a portion of the MTC region, and constructed chromosome 11-specific oligonucleotides that were in conjunction with a consensus immunoglobulin (Ig) heavy chain joining region (JH) primer used to perform the polymerase chain reaction (PCR) to amplify t(11;14) chromosomal junctional sequences in DNA from 16 MCL patients with breakpoints in the MTC region. 15 of the 16 breakpoints that occurred at the MTC region were amenable to PCR detection. The sizes of the amplified bands, the existence or not of a Sac I site in the PCR products, and nucleotide sequencing of the amplified DNA from four patients showed that the breakpoints share a remarkable tendency to tightly cluster within 300 bp on chromosome 11, some of them occurring at the same nucleotide. On chromosome 14, the breakpoints were localized within the Ig JH. Our findings indicate that a BCL1 rearrangement can be detected using this approach in roughly one half of the MCL patients. This has implications for both the diagnosis and the clinical management of MCL.  相似文献   

20.
The breakpoint of 14q32 translocations found in B-cell malignancies was delineated specifically in both metaphase spreads and interphase nuclei by double-color fluorescence in situ hybridization (FISH) using bacteriophage clones containing the human immunoglobulin gamma chain gene locus (Ig gamma) and a cosmid clone, CY24-68, containing VH segments. CY24-68 is more telomeric than Ig gamma, separated by approximately 1 megabase (Mb). FISH studies were performed on four patients with non-Hodgkin's lymphoma (NHL), one with acute lymphoblastic leukemia (ALL), one with plasma cell leukemia (PCL), and three cell lines. In each patient with t(8;14), t(14;18), and t(3;14), the signal of Ig gamma gene was observed on der(14) and that of CY24-68 at respective partner sites of these translocations, 8q24.1, 18q21.3, and 3q27. Interphase nuclei with a signal of Ig gamma clearly separated from that of CY24-68 were more frequently encountered in all of the patients (45% to 74%) than those in normal controls (4% to 5%). Even in cases where only interphase nuclei were available for FISH studies, 14q32 translocations are detected as shown in two patients each with NHL and t(11;14)-carrying PCL. In two cell lines, HS-1 derived from ALL carrying t(8;14) and FR4 derived from a plasmacytoma carrying a complex form of t(8;14), the signal of Ig gamma was observed at the breakpoint region 8q24.1 of the der(8) in addition to the der(14), indicating that translocation event occurred within the Ig gamma locus. Intense Ig gamma signal was found at the breakpoint region on the der(14)t(11;14) in HBL-2 derived from NHL, indicating amplification of the Ig gamma gene, and presumably the resultant chimeric DNA between Ig gamma and DNA sequences at 11q13. The present approach allowed us to unequivocally detect tumor-specific breakpoints of 14q32 translocations. Furthermore, interphase FISH provides a rapid diagnostic procedure to detect 14q32 translocations in B-cell malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号