首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
王磊  刘国龙  杨磊 《微电机》2024,(2):56-62
由于风机轴承易发生故障且振动信号分析对于故障诊断极其有效,提出了基于自适应噪声完备集合经验模态分解(Complete Ensemble EmpiricalMode Decomposition with Adaptive Noise,CEEMDAN)和变分模态分解(Variational Modal Decomposition,VMD)相结合的信号处理方法。首先,使用CEEMDAN将采集到的振动信号分解成若干本征模态函数(Intrinsic Mode Function,IMF)分量,并使用能量加权合成峭度指标筛选故障特征明显的IMF分量,进行信号重构;之后,利用VMD将新的信号进行再分解,将VMD分解后每个IMF的能量比与基于包络熵和包络谱峭度组合的复合指标筛选出的最优IMF分量构建能量熵、样本熵、近似熵进行特征融合;最后,将融合特征矩阵输入到蛇优化算法(SO)优化支持向量机(SVM)进行识别和分类,实现多故障模式识别。通过仿真实验表明:此方法对于检测轴承十种劣化状态,诊断正确率达到98%。为风机轴承故障诊断提供了一种新的思路。  相似文献   

2.
为有效提高滚动轴承故障诊断准确率,提出了基于自适应噪声集合经验模态分解(CEEMDAN)气泡熵(BE)和支持向量机(SVM)相结合的轴承故障诊断方法。首先经CEEMDAN分解得到一系列本征模态函数(IMF)分量,然后筛选重要IMF分量计算其气泡熵值,构建故障特征向量并输入到经算术优化算法(AOA)优化的SVM模型中进行训练和轴承故障分类。结果表明该方法识别准确率高达992%,相比GA SVM准确率提升了28%,也能成功识别出滚动轴承单一故障与复合故障,可以用于轴承故障分类。  相似文献   

3.
铁路机车传动系统的故障诊断,对保障列车安全可靠运行、防范事故发生起重要的作用。为了有效诊断牵引电机轴承的早期故障,提出基于经验模态分解和改进双谱的故障特征提取方法。经验模态分解是一种数据驱动的信号处理算法,相当于一个自适应滤波器组,其可将信号分解成占据不同频带的固有模态函数,实现信号消噪。滚动轴承承载运转时,局部损伤点以故障特征频率反复撞击与之接触的其它元件表面,会引发机械系统共振;基于此,采用改进双谱分析轴承振动信号各分量间的相互作用,检测轴承故障特征频率。机车实际运行试验表明,所提方法能准确诊断牵引电机轴承的早期故障。  相似文献   

4.
针对故障滚动轴承振动信号中含有干扰信号,难以准确提取出故障信息,提出了一种基于奇异值分解(SVD)、变分模态分解(VMD)、和支持向量机(SVM)的滚动轴承故障诊断方法。首先利用奇异值分解对信号进行处理,根据奇异值峰度差分谱来确定分解后重构矩阵的有效阶数,然后根据该有效阶数重构信号,对重构后的信号进行VMD分解,根据上述有效阶数确定分解的本征模态函数(IMF)分量的个数,从分解后的IMF分量中提取故障特征参数,将其作为支持向量机的输入参数进行故障诊断。最后采用合肥工业大学轴承试验机进行验证,并与直接进VMD分解及基于带通滤波器信号去噪的故障诊断方法进行对比,结果表明该方法能有效识别滚动轴承的故障类型,可用于滚动轴承故障诊断。  相似文献   

5.
针对振动信号判别断路器机械故障过程受干扰影响的特征提取问题,提出一种自适应白噪声完整集合经验模态分解(CEEMDAN)与样本熵相结合的故障特征提取方法。通过CEEMDAN提取若干反映断路器操动过程机械状态信息的本征模态函数(IMF)分量,依据各IMF相关系数与能量分布,将前7阶IMF分量进行小波包软阈值去噪,计算其样本熵作为特征量,最后采用基于免疫浓度思想的烟花算法(FWA)优化支持向量机(SVM)分类器,对断路器不同运行状态进行分类识别。实验结果表明:基于CEEMDAN样本熵特征对于信号干扰不敏感,FWA-SVM诊断方法对于高压断路器分闸操动过程故障辨识效果良好。  相似文献   

6.
针对电机轴承振动信号受噪声干扰影响特征提取和传统贝叶斯网络故障诊断准确率低的问题,提出一种基于改进贝叶斯网络的电机轴承故障诊断方法。采用自适应噪声集合模态分解的方法对数据进行降噪处理,增加了模型的鲁棒性;采用差分进化和模拟退火算法对蝗虫算法进行优化,增强蝗虫算法的全局和局部搜索能力;将优化后的蝗虫算法应用于贝叶斯网络结构学习构建轴承故障诊断模型;通过实验对比证明,该方法对轴承的多故障分类具有更强的学习能力和更高的准确率,实验对部分样本的故障诊断率达到97.15%,平均准确率达到98.73%。  相似文献   

7.
在电机的振动信号中,若电机轴承发生故障,则故障通过一种周期性的循环冲击形式表现出来,而且通常伴随有噪声干扰在这里面,所以提取这个轴承的故障特征会变得困难。正文提出一种新的过滤噪声方法,该方法基于新的自适应阈值的改进阈值函数,可以滤掉小波分解细尺度上的噪声,并且细节系数此时也可以很大限度地保留下来,最终,噪声也在宽尺度上被高效地过滤掉。若将滤除噪声后的信号做EMD处理,并且在选取IMF时,根据互相关系数结合峭度准则可以排除IMF分量在选择时候的无目的性。通过对仿真结果的分析,轴承故障能通过这种方法快速准确地检测出来,最终证明了这个方法的有效性。  相似文献   

8.
《华东电力》2013,(2):471-474
介绍了采用基于经验模态分解EMD包络谱的滚动轴承早期故障诊断方法。该方法先用EMD将原始时域信号分解为若干个平稳的固有模态函数IMF之和,然后求出包含主要故障信息的多个IMF分量的包络谱,通过包络谱频率来判断滚动轴承的故障类型。对滚动轴承内圈故障振动信号的分析结果表明,基于经验模态分解包络谱的故障诊断方法能够比传统的FFT频谱更加及时准确的提取滚动轴承的故障特征,利于提早发现故障隐患。  相似文献   

9.
王潇桐 《电气应用》2021,40(12):14-19
电动机轴承的振动信号具有不平稳、非线性和高噪声等特点.在轴承故障的情况下,通过原始信号或部分时域特征参数不易准确判断故障位置.为解决此问题,在考虑时域特征的基础上,进一步通过集成经验模态分解(EEMD)和模糊熵进行特征参数提取.将轴承在正常、内滚道故障、滚动体故障以及外滚道的三个方向故障状态下的振动信号通过集成经验模态...  相似文献   

10.
针对滚动轴承工作环境复杂,轴承振动信号受噪声干扰难以提取故障特征以及传统故障诊断算法准确率较低的问题,提出了利用自适应噪声完备集合经验模态分解算法(CEEMDAN)联合卷积神经网络(CNN)内嵌长短期记忆神经网络(LSTM)的滚动轴承故障诊断方法。首先,利用CEEMDAN算法对轴承原始振动信号进行分解得到本征模态函数(IMF);然后计算重构后的信号的排列熵,归一化后作为特征向量;最后将特征向量输入至CNN-LSTM结合建立的深度学习模型中进行诊断识别。结果表明:所提方法具有更快的拟合速度和更高的准确率,平均故障诊断准确率达到98.63%。  相似文献   

11.
针对配电变压器故障特征提取困难、故障识别难度大的问题,提出一种将振动信号、自适应噪声完备集合经验模态分解 (CEEMDAN)与图卷积神经网络(GCN)三者有机结合的故障诊断方法。 首先,采用 CEEMDAN 对来自加速度传感器的振动信 号进行处理,获得一组固有模态分量(intrinsic modal function);其次求取边际谱信息作为特征向量;然后,对特征向量矩阵构造 无向加权完全图,并使用改进灰狼优化算法对高斯核带宽进行寻优;最后,搭建一个具备多通道和多连通的改进 GCN 模型进行 特征二次挖掘与故障分类。 与此同时,还在模型中加入一种名叫“峰值因子”指标实现对未知类型故障的辨识。 在实例分析 中,分别对油浸式和干式变压器进行故障模拟,提取不同状态的样本进行测试。 实验结果表明,所提方法对油浸式和干式变压 器的故障识别准确率分别达到 97. 73%和 95. 6%,优于其他两种对比方法。 在面对未知类型故障以及运行工况发生变化时,也 具备较高是识别能力。  相似文献   

12.
盲源分离较之传统的信号处理方法在处理弱信号问题上更具优势。针对轴承故障诊断中因条件限制仅能进行单通道信号采集的情况,提出了一种基于总体经验模式分解的一维盲源分离算法。算法先通过总体经验模式分解将信号分解为多个本征模态函数,再根据本征模态函数之间的相关系数重组观测矩阵,最后利用近似联合对角化对矩阵进行盲源分离。通过数据仿真将该方法与小波分析和Hilbert-Huang变换作对比,说明该方法更适于处理低信噪比的轴承故障信号。对滚动轴承进行了故障诊断实验,成功找到了表征内圈故障和外圈故障的特征信息。  相似文献   

13.
经验模态分解(EMD)作为希尔伯特-黄变换(HHT)的重要组成部分,为了克服其在谐波检测中出现的模态混叠、端点效应问题,提出采用自适应噪声完备集合经验模态分解(CEEMDAN)和希尔伯特变换(HT)相结合的谐波检测新方法。文章首先在理论上对比分析了EMD、EEMD以及CEEMDAN算法,研究CEEMDAN算法的特性。再用CEEMDAN算法对原始信号进行分解,得到固有模态函数(IMF)。最后用HT算法对每阶IMF分量进行分析,检测到谐波中包含的瞬时幅频信息。算例仿真结果表明,相对于HHT算法对信号的处理能力,文中提出的方法在谐波检测中有效地克服了EMD算法的弊端,提高了信号分解精度。  相似文献   

14.
基于DCT和EMD的滚动轴承故障诊断   总被引:1,自引:0,他引:1  
根据轴承故障振动信号特点,提出了一种离散余弦变换和经验模态分解相结合的轴承振动信号故障诊断新方法。将离散时间序列经过离散余弦变换处理成对应的系数向量,在阈值处理的基础上,重构信号提高故障信号的信噪比;对重构信号进行经验模态分解,通过相关系数计算去除伪分量,并进行频谱分析。仿真信号和轴承故障信号的分析表明,该方法提高了信噪比,降低了EMD运算成本,减少了IMF的数量,保证了IMF的物理意义,成功完成微弱故障诊断。  相似文献   

15.
针对在高速铁路复杂电磁环境中应答器上行链路(balise uplink, BU)信号传输受扰的问题,提出了一种基于自适应白噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)与小波包自适应阈值的联合降噪方法。首先,采用CEEMDAN算法将模拟BU信号分解为12个模态分量,根据相关系数判断分量为相关分量或无关分量;然后,相关分量经小波包降噪处理后重构为降噪后的BU信号;最后,选用信噪比(signal-noise ratio, SNR)和均方根误差(root mean square error, RMSE)作为评价指标,将该方法与目前广泛采用的6种降噪方法进行对比,信噪比提高了0.486 1~6.144 dB,均方根误差降低了0.054 9~11.091。为检验该方法的实际应用效果,采用联合降噪方法对实测BU信号进行降噪处理。仿真验证和实验验证的结果表明,采用联合降噪方法降噪后的BU信号不仅噪声分量得到了有效去除,而且信号特征保存完好,证明该方法能够应用于解决实际BU信...  相似文献   

16.
滚动轴承的局部缺陷产生的冲击可激励起轴承自身固有频率及相邻部件固有频率,使得采集到的振动信号中包含多个共振频带。针对一般方法难以直接地定位多个共振频带的问题,通过讨论变分模式分解方法与轴承故障振动信号之间的内在联系,提出一种多共振频带自适应检测的轴承微弱故障诊断方法。该方法首先采用变分模式分解法将振动信号分解为独立模式分量,然后对解析形式的独立模式分量进行包络分析,最后提出以归一化频率能量比作为识别故障分量的准则以及把故障模式分量的中心频率作为轴承缺陷激励起的相关部件固有频率。仿真与试验分析结果表明该方法可准确地检测多共振频带,以及有效地进行轴承微弱故障诊断且诊断结果显著优于传统解调方法。  相似文献   

17.
EMD小波变换水轮机故障奇异数据还原研究   总被引:1,自引:0,他引:1  
水轮机组状态监测数据由于受到传感器、测量条件、环境等因素影响会造成数据失真,产生众多奇异点,对正确分析机组运行状态十分不利。本文提出通过经验模态分解与小波变换相结合的方法来分析水轮机故障信号的奇异性,该方法将原始信号经验模态分解后,利用小波变换检测出信号中的奇异点,并将剔除奇异点的信号重构,通过重构信号对机组进行分析。实例仿真表明,与直接对原信号进行小波分析相比,该方法提取的奇异性特征明显并能准确重构,在采用通用传感器信号准确描述机组状态和正确认识机组故障上有较好的应用价值。  相似文献   

18.
针对滚动轴承故障特征难以提取等问题,提出利用判别指标最大准则选择最优形态滤波算子进行轴承故障特征提取新方法,以达到在噪声干扰下更优的故障冲击信号提取效果。首先利用6种形态滤波器以不同尺度结构元素对轴承故障信号进行降噪处理;其次计算滤波信号的判别指标,以判别指标最大原则获取最佳形态滤波算子;然后利用最佳形态滤波算子处理滚动轴承实例故障信号;最后借助特征频率强度系数、峭度和偏斜度评价滤波质量,将该方法与传统方法进行比较。测试结果表明,该方法能够更好地提取轴承故障特征信息,有效抑制噪声实现轴承故障精确诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号