首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
为有效提高滚动轴承故障诊断准确率,提出了基于自适应噪声集合经验模态分解(CEEMDAN)气泡熵(BE)和支持向量机(SVM)相结合的轴承故障诊断方法。首先经CEEMDAN分解得到一系列本征模态函数(IMF)分量,然后筛选重要IMF分量计算其气泡熵值,构建故障特征向量并输入到经算术优化算法(AOA)优化的SVM模型中进行训练和轴承故障分类。结果表明该方法识别准确率高达992%,相比GA SVM准确率提升了28%,也能成功识别出滚动轴承单一故障与复合故障,可以用于轴承故障分类。  相似文献   

2.
铁路机车传动系统的故障诊断,对保障列车安全可靠运行、防范事故发生起重要的作用。为了有效诊断牵引电机轴承的早期故障,提出基于经验模态分解和改进双谱的故障特征提取方法。经验模态分解是一种数据驱动的信号处理算法,相当于一个自适应滤波器组,其可将信号分解成占据不同频带的固有模态函数,实现信号消噪。滚动轴承承载运转时,局部损伤点以故障特征频率反复撞击与之接触的其它元件表面,会引发机械系统共振;基于此,采用改进双谱分析轴承振动信号各分量间的相互作用,检测轴承故障特征频率。机车实际运行试验表明,所提方法能准确诊断牵引电机轴承的早期故障。  相似文献   

3.
针对故障滚动轴承振动信号中含有干扰信号,难以准确提取出故障信息,提出了一种基于奇异值分解(SVD)、变分模态分解(VMD)、和支持向量机(SVM)的滚动轴承故障诊断方法。首先利用奇异值分解对信号进行处理,根据奇异值峰度差分谱来确定分解后重构矩阵的有效阶数,然后根据该有效阶数重构信号,对重构后的信号进行VMD分解,根据上述有效阶数确定分解的本征模态函数(IMF)分量的个数,从分解后的IMF分量中提取故障特征参数,将其作为支持向量机的输入参数进行故障诊断。最后采用合肥工业大学轴承试验机进行验证,并与直接进VMD分解及基于带通滤波器信号去噪的故障诊断方法进行对比,结果表明该方法能有效识别滚动轴承的故障类型,可用于滚动轴承故障诊断。  相似文献   

4.
针对振动信号判别断路器机械故障过程受干扰影响的特征提取问题,提出一种自适应白噪声完整集合经验模态分解(CEEMDAN)与样本熵相结合的故障特征提取方法。通过CEEMDAN提取若干反映断路器操动过程机械状态信息的本征模态函数(IMF)分量,依据各IMF相关系数与能量分布,将前7阶IMF分量进行小波包软阈值去噪,计算其样本熵作为特征量,最后采用基于免疫浓度思想的烟花算法(FWA)优化支持向量机(SVM)分类器,对断路器不同运行状态进行分类识别。实验结果表明:基于CEEMDAN样本熵特征对于信号干扰不敏感,FWA-SVM诊断方法对于高压断路器分闸操动过程故障辨识效果良好。  相似文献   

5.
针对电机轴承振动信号受噪声干扰影响特征提取和传统贝叶斯网络故障诊断准确率低的问题,提出一种基于改进贝叶斯网络的电机轴承故障诊断方法。采用自适应噪声集合模态分解的方法对数据进行降噪处理,增加了模型的鲁棒性;采用差分进化和模拟退火算法对蝗虫算法进行优化,增强蝗虫算法的全局和局部搜索能力;将优化后的蝗虫算法应用于贝叶斯网络结构学习构建轴承故障诊断模型;通过实验对比证明,该方法对轴承的多故障分类具有更强的学习能力和更高的准确率,实验对部分样本的故障诊断率达到97.15%,平均准确率达到98.73%。  相似文献   

6.
在电机的振动信号中,若电机轴承发生故障,则故障通过一种周期性的循环冲击形式表现出来,而且通常伴随有噪声干扰在这里面,所以提取这个轴承的故障特征会变得困难。正文提出一种新的过滤噪声方法,该方法基于新的自适应阈值的改进阈值函数,可以滤掉小波分解细尺度上的噪声,并且细节系数此时也可以很大限度地保留下来,最终,噪声也在宽尺度上被高效地过滤掉。若将滤除噪声后的信号做EMD处理,并且在选取IMF时,根据互相关系数结合峭度准则可以排除IMF分量在选择时候的无目的性。通过对仿真结果的分析,轴承故障能通过这种方法快速准确地检测出来,最终证明了这个方法的有效性。  相似文献   

7.
《华东电力》2013,(2):471-474
介绍了采用基于经验模态分解EMD包络谱的滚动轴承早期故障诊断方法。该方法先用EMD将原始时域信号分解为若干个平稳的固有模态函数IMF之和,然后求出包含主要故障信息的多个IMF分量的包络谱,通过包络谱频率来判断滚动轴承的故障类型。对滚动轴承内圈故障振动信号的分析结果表明,基于经验模态分解包络谱的故障诊断方法能够比传统的FFT频谱更加及时准确的提取滚动轴承的故障特征,利于提早发现故障隐患。  相似文献   

8.
王潇桐 《电气应用》2021,40(12):14-19
电动机轴承的振动信号具有不平稳、非线性和高噪声等特点.在轴承故障的情况下,通过原始信号或部分时域特征参数不易准确判断故障位置.为解决此问题,在考虑时域特征的基础上,进一步通过集成经验模态分解(EEMD)和模糊熵进行特征参数提取.将轴承在正常、内滚道故障、滚动体故障以及外滚道的三个方向故障状态下的振动信号通过集成经验模态...  相似文献   

9.
针对滚动轴承工作环境复杂,轴承振动信号受噪声干扰难以提取故障特征以及传统故障诊断算法准确率较低的问题,提出了利用自适应噪声完备集合经验模态分解算法(CEEMDAN)联合卷积神经网络(CNN)内嵌长短期记忆神经网络(LSTM)的滚动轴承故障诊断方法。首先,利用CEEMDAN算法对轴承原始振动信号进行分解得到本征模态函数(IMF);然后计算重构后的信号的排列熵,归一化后作为特征向量;最后将特征向量输入至CNN-LSTM结合建立的深度学习模型中进行诊断识别。结果表明:所提方法具有更快的拟合速度和更高的准确率,平均故障诊断准确率达到98.63%。  相似文献   

10.
基于DCT和EMD的滚动轴承故障诊断   总被引:1,自引:0,他引:1  
根据轴承故障振动信号特点,提出了一种离散余弦变换和经验模态分解相结合的轴承振动信号故障诊断新方法。将离散时间序列经过离散余弦变换处理成对应的系数向量,在阈值处理的基础上,重构信号提高故障信号的信噪比;对重构信号进行经验模态分解,通过相关系数计算去除伪分量,并进行频谱分析。仿真信号和轴承故障信号的分析表明,该方法提高了信噪比,降低了EMD运算成本,减少了IMF的数量,保证了IMF的物理意义,成功完成微弱故障诊断。  相似文献   

11.
针对配电变压器故障特征提取困难、故障识别难度大的问题,提出一种将振动信号、自适应噪声完备集合经验模态分解 (CEEMDAN)与图卷积神经网络(GCN)三者有机结合的故障诊断方法。 首先,采用 CEEMDAN 对来自加速度传感器的振动信 号进行处理,获得一组固有模态分量(intrinsic modal function);其次求取边际谱信息作为特征向量;然后,对特征向量矩阵构造 无向加权完全图,并使用改进灰狼优化算法对高斯核带宽进行寻优;最后,搭建一个具备多通道和多连通的改进 GCN 模型进行 特征二次挖掘与故障分类。 与此同时,还在模型中加入一种名叫“峰值因子”指标实现对未知类型故障的辨识。 在实例分析 中,分别对油浸式和干式变压器进行故障模拟,提取不同状态的样本进行测试。 实验结果表明,所提方法对油浸式和干式变压 器的故障识别准确率分别达到 97. 73%和 95. 6%,优于其他两种对比方法。 在面对未知类型故障以及运行工况发生变化时,也 具备较高是识别能力。  相似文献   

12.
经验模态分解(EMD)作为希尔伯特-黄变换(HHT)的重要组成部分,为了克服其在谐波检测中出现的模态混叠、端点效应问题,提出采用自适应噪声完备集合经验模态分解(CEEMDAN)和希尔伯特变换(HT)相结合的谐波检测新方法。文章首先在理论上对比分析了EMD、EEMD以及CEEMDAN算法,研究CEEMDAN算法的特性。再用CEEMDAN算法对原始信号进行分解,得到固有模态函数(IMF)。最后用HT算法对每阶IMF分量进行分析,检测到谐波中包含的瞬时幅频信息。算例仿真结果表明,相对于HHT算法对信号的处理能力,文中提出的方法在谐波检测中有效地克服了EMD算法的弊端,提高了信号分解精度。  相似文献   

13.
针对风力发电机早期故障表征不明显、能采集有效数据量较少、诊断结果精度较低等问题,文中提出一种运用综合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)结合相关向量机的方法对风力发电机多类故障进行早期诊断。首先,利用EEMD结合灰色关联度的方法对风机各类故障的振动信号进行预处理,提取最优故障特征;再通过相关向量机(Relevance Vector Machine,RVM)对提取的故障特征训练,并建立相应的故障诊断模型进行诊断。在实例中将文中所提方法 EEMD-RVM与小波包分解(Wavelet Packet Decomposition,WPD)结合RVM以及EEMD结合最小二乘支持向量机LS-SVM(Least Square Support Vector Machine,LS-SVM)方法的诊断结果作对比,结果表明,EEMD-RVM方法具有可行性,且具有耗时短、精度高等优点。  相似文献   

14.
针对在高速铁路复杂电磁环境中应答器上行链路(balise uplink, BU)信号传输受扰的问题,提出了一种基于自适应白噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)与小波包自适应阈值的联合降噪方法。首先,采用CEEMDAN算法将模拟BU信号分解为12个模态分量,根据相关系数判断分量为相关分量或无关分量;然后,相关分量经小波包降噪处理后重构为降噪后的BU信号;最后,选用信噪比(signal-noise ratio, SNR)和均方根误差(root mean square error, RMSE)作为评价指标,将该方法与目前广泛采用的6种降噪方法进行对比,信噪比提高了0.486 1~6.144 dB,均方根误差降低了0.054 9~11.091。为检验该方法的实际应用效果,采用联合降噪方法对实测BU信号进行降噪处理。仿真验证和实验验证的结果表明,采用联合降噪方法降噪后的BU信号不仅噪声分量得到了有效去除,而且信号特征保存完好,证明该方法能够应用于解决实际BU信...  相似文献   

15.
盲源分离较之传统的信号处理方法在处理弱信号问题上更具优势。针对轴承故障诊断中因条件限制仅能进行单通道信号采集的情况,提出了一种基于总体经验模式分解的一维盲源分离算法。算法先通过总体经验模式分解将信号分解为多个本征模态函数,再根据本征模态函数之间的相关系数重组观测矩阵,最后利用近似联合对角化对矩阵进行盲源分离。通过数据仿真将该方法与小波分析和Hilbert-Huang变换作对比,说明该方法更适于处理低信噪比的轴承故障信号。对滚动轴承进行了故障诊断实验,成功找到了表征内圈故障和外圈故障的特征信息。  相似文献   

16.
基于CEEMDAN和SVR的锂离子电池剩余使用寿命预测   总被引:1,自引:0,他引:1       下载免费PDF全文
锂离子电池剩余使用寿命(RUL)的估算是锂离子电池健康管理的关键,准确可靠地预测锂离子电池的剩余使用寿命对系统的安全正常运行至关重要。提出了一种结合完备集合经验模态分解(CEEMDAN)和支持向量回归(SVR)的锂离子电池剩余使用寿命预测方法。首先,在放电过程中提取了一个可测量的健康因子,并使用Pearson和Spearman法分析健康因子与容量之间的相关性,然后利用CEEMDAN将健康因子进行分解,获得一系列相对平稳的分量,最后采用CEEMDAN分解后的健康因子作为SVR预测模型输入,容量作为输出,实现锂离子电池RUL预测。利用NASA PCoE提供的锂离子电池退化数据集进行试验,与标准SVR模型相比,实验结果表明利用该方法能够有效验证所提出的RUL预测模型的有效性,并且使预测误差控制在2%以下。  相似文献   

17.
针对滚动轴承振动信号具有非线性、非平稳性和非高斯性,并且故障特征往往淹没于系统噪声之中而难于识别的问题, 提出了以多种群差分进化(multiple population differential evolution, MPDE) 算法来改进集合经验模式分解( ensemble empirical mode decomposition, EEMD) 的 MPDE-EEMD 消噪方法,并与自适应共振解调技术( adaptive resonance demodulation technique, ARDT)相结合实现故障特征提取。 首先,为了解决 EEMD 中加入参数依靠人工选择且难以准确获取的问题,建立极值点分布 特性评价函数,利用 MPDE 来寻优获取最佳白噪声幅值,实现 EEMD 自适应分解。 然后,采用峭度与相关性相结合的准则对分 解后的 IMF 分量进行自动筛选,将满足条件的有效信号进行重构,实现对原始振动信号的降噪处理。 最后,采用 ARDT 自动确 定对消噪信号进行带通滤波的带宽和中心频率,再通过包络解调提取出滤波信号的特征频率。 将轴承仿真故障信号与实际故 障信号用于算法的验证,结果表明 MPDE-EEMD+ARDT 能有效提取出轴承故障特征。  相似文献   

18.
了解决完整集合经验模态分解(complete ensemble empirical mode decomposition, CEEMD)得到的固有模态函数分量数目及其频段不固定,以及故障电弧特征难以准确提取导致故障识别准确率低的不足,引入T检验和方差贡献率形成了一种改进CEEMD方法,进一步提出一种基于改进CEEMD和随机森林(random forest, RF)的串联故障电弧识别方法。首先,依托串联电弧故障试验平台,采集不同负载的电流信号。然后,采用改进CEEMD对信号进行分析并提取故障特征量,以TreeBagger函数进行特征降维,形成特征向量样本集。最后,结合RF构建故障电弧诊断模型,对样本集进行分类识别。结果表明:改进CEEMD能有效地提取不同负载电流的故障特征,所提故障电弧识别方法的识别准确率达到97.50%。通过进行不同特征提取方法和不同分类模型对诊断结果影响的消融实验,进一步证明了所提方法的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号