共查询到20条相似文献,搜索用时 93 毫秒
1.
提出将小波分析和遗传程序设计算法相结合用于电力系统的短期负荷预测.具体过程是先对负荷序列进行小波分解,然后对小波分解后的各尺度负荷序列分别利用遗传程序设计进行分时预测,并通过对各尺度的预测结果进行重构来得到最终预测结果.仿真结果表明,该方法具有较好的预测效果和可行性. 相似文献
2.
提出了采用小波变换和遗传算法优化神经网络的混合模型对电力负荷进行短期预测。首先通过小波变换,将原始负荷序列分解到不同的尺度上,然后根据不同的子负荷序列的特性分别建立相匹配的神经网络模型,采用遗传算法优化各神经网络模型的初始权值,最后对各分量预测结果进行重构得到最终预测值。采用成都某地区2009年的实际负荷对所提方法进行验证,实验结果表明基于该方法的负荷预测系统具有较高的预测精度。 相似文献
3.
根据电力系统负荷的特点,提出了基于反向Haar小波变换的电力系统负荷预测.介绍了反向Haar小波变换的数学模型,叙述了基于反向Haar小波变换的电力系统负荷预测的方法,通过实例计算并与其它方法的比较,说明反向Haar小波算法既充分利用了小波变换的优点,又克服了某些传统算法在电力系统负荷预测中的不足,该方法简单、可靠,便于形成实时软件,对提高电力系统电网规划水平具有重要意义. 相似文献
4.
精准的负荷预测对售电公司在电力市场中的运行起着十分重要的作用,而企业用户的负荷受多种因素的影响具有不平稳的特性,对此,提出了基于离散小波分解和粒子群优化的季节性Holt-Winters模型的短期负荷预测方法.针对原始负荷序列周期性不平稳的特性,利用离散小波变换对原始负荷序列进行分解,并采用季节性Holt-Winters模型进行预测,同时借助小波去噪和粒子群算法进一步提高预测模型的准确性.小波去噪在过滤原始数据中潜在的噪声的同时,对数据进行平滑处理,而粒子群算法能让Holt-Winters模型在训练过程找到最优参数.采用该模型来预测具有不同变化趋势的日负荷曲线,结果表明所提出的模型具有较高的预测精度,可适用于不同用电类型的用户负荷短期预测. 相似文献
5.
为了满足微电网的建设和发展对其负荷预测的精度和方法适应性提出的更高要求,本文在时域和频域上比较分析了微电网负荷曲线和传统负荷曲线,得出了微电网负荷波动性更强的结论,然后根据微电网负荷的特点,考虑微电网负荷受星期类型和气象因素的影响,提出对微电网负荷进行离散小波分解的基础上,建立支持向量机(SVM)模型对各层分量分别进行预测,最后运用分解关系得出预测结果。研究表明,与直接应用SVM模型预测相比,分解微电网负荷曲线后再进行SVM模型预测能够实现更高的预测精度,更适用于当前微电网短期负荷预测需要。 相似文献
6.
7.
基于小波包分析的电力负荷预测算法 总被引:4,自引:1,他引:4
提出基于小波包分解和重构的电力负荷预测算法.算法使用具有线性相位的双正交小波对电力负荷数据进行小波包分解和重构,然后用神经网络直接对各尺度上的电力负荷分量进行预测,最后将各尺度上的预测值相加,得到实际负荷预测值.算例表明算法具有较高的预测精度,优于传统的BP神经网络,有利于分析不同时频区域的电力负荷特性,为更准确地建模和预测提供了条件. 相似文献
8.
随着电动汽车(electric vehicle,EV)的持续推广,其强随机性的充电负荷为配电网运行带来挑战.为提高配电网运行可靠性与经济性,提出一种基于多相关日场景生成的EV充电负荷区间预测方法.首先,利用斯皮尔曼秩相关系数,分析待预测日EV充电负荷与其历史日EV充电负荷之间的相关性,找出与待预测日有较强相关性的历史日... 相似文献
9.
大型发电机组远程状态监测系统中实时数据的存储与网络传输对数据压缩和重构技术提出了较高的要求.文中给出一种提升小波变换与混合熵编码技术相结合的数据压缩方法.首先利用基于提升格式的双正交滤波器组对实时数据进行小波分解,然后对小波系数进行阈值量化,最后通过混合熵编码技术对保留的系数进行编码,以进一步提高压缩效率.对实际发电机组实时数据进行了压缩试验,结果表明,有损压缩技术和无损压缩技术的结合可以获得较高的压缩比,能够较好地满足大型发电机组实时数据的存储和传输需求,是一种有效和实用的实时数据压缩方法. 相似文献
10.
11.
蚁群算法能够在没有任何先验知识和人为干预的情况下实现自主聚类,并且鲁棒性较强,易于与其他算法相结合.但蚁群算法消耗时间成本较大,效率较低.而K-medoids聚类是一个基于划分的经典聚类算法,该算法聚类速度快、聚类效果好而被广泛应用于各种聚类处理中.但需要人为确定簇数目,并对初始簇中心的依赖性较强.针对以上问题,提出了结合蚁群算法和K-medoids的聚类算法(AKCA),该算法融合了蚁群算法和K-medoids算法各自在聚类上的优点.实验结果表明,该算法对于小型数据集具有运行效率高、聚类质量好和自适用性强等优点. 相似文献
12.
为了研究智能电网背景下用户的用电模式,考虑到现有聚类算法的不足,提出了一种基于离散小波变换的模糊K-modes聚类算法。利用离散小波变换将时域的负荷曲线转换到频域,从而将负荷曲线的不同特征隔离在不同的频域水平,并利用低阶近似的思想选取原始曲线的有效分量曲线;对所选的分量曲线进行趋势编码,将连续负荷数据转化为离散类属性数据;基于平均密度确定初始聚类条件,利用模糊K-modes聚类算法对曲线进行形态聚类,得到负荷曲线模板;将所提算法与传统K-means算法及层次聚类算法进行比较,从而验证了所提算法的有效性。 相似文献
13.
基于小波变换和混合神经网络的短期负荷预测 总被引:1,自引:2,他引:1
提出通过小波分解对各负荷子序列进行特性分析初选影响因素后,采用信息熵法从初选变量中自动筛选出对负荷较重要的因素,然后采用改进的主成分分析法消除重要影响因素间的相关性,采用动态聚类法对各分解序列的样本归类,通过灰色关联分析选择出与预测时刻负荷模式最相似的类作为神经网络训练的典型样本集,采用蚁群优化算法训练各子序列相应神经网络模型,采用小波重构得到最终负荷预测结果。并利用某地区1999年的实际负荷对所提方法进行验证,结果表明了该方法的合理性和有效性。 相似文献
14.
15.
提出一种改进的基于离散小波变换和支持向量机的短期负荷预测方法。运用离散小波变换将负荷时间序列分解为高低频子序列,采用目前较为成熟的支持向量机方法,选择适当的参数对每个序列进行滚动式的单支预测,最后将各分支预测结果相加最终实现负荷预测。实例中负荷数据采用四川省某地区的历史负荷,对该地区的日96点负荷进行全年预测,并将该算法与支持向量机算法进行比较,结果表明,该算法具有较高预测精确性。 相似文献
16.
在深入分析研究滤波器系数为整数的整数小波变换的基础上,首次提出了基于小波的电压、电流有效值及功率分频带测量的整数算法,并用框图形式表示出其在DSP上的实现方案.实验中采用Dmey小波的整数测量算法测量电压、电流有效值功率的准确度可优于10-4,速度比第一代小波变换的测量算法提高了十倍以上. 相似文献
17.
基于小波变换和三点法的基波频率测量 总被引:3,自引:0,他引:3
小波变换可以在非同步交流采样情况下,提取畸变信号中的基波分量,但检测结果存在少许误差。三点法可通过任意三个等间隔检测点提取正弦信号频率,但检测点误差会严重影响测频精度。对三点法误差的数学机理进行分析发现,合理的选择检测点之间的间隔可以使结果误差最小。极值分析和牛顿迭代法可被用来近似计算最优检测点间隔。通过误差的抑制和个别较大误差结果的剔除,小波变换能与三点法结合对电网中畸变信号的基波频率进行高精度检测。仿真算例证明本文算法精度要优于小波变换与过零法或极值法结合的算法精度。 相似文献
18.
介绍了小波子带功率信号分解方法的原理与算法,提出了多相结构小波电参量测量方法,分析推导了双通道IIR正交多相小波滤波器组的结构,得到一种新型电参量信号的高效测量算法,解决了传统测量算法(FFT)、普通小波测量算法(FIR、IIR直接Ⅰ型)计算量大,时间复杂度高的问题。实验结果表明:采用文章高效测量算法,测量电流有效值、电压有效值、有功功率和无功功率,算法所需的时间小于FFT测量算法和普通小波测量算法的四分之一,测量算法的准确度优于1×10~(-4),表明多相结构小波电参量高效测量算法计算时间短、测量准确度高。 相似文献
19.
居民用电信息细化对于规划居民电器使用和降低电能消耗具有重要的意义。文章在非侵入式负载识别技术的基础上,提出了一种利用数据挖掘算法进行协同训练的方法,小波设计用于提取家庭常用电器的开、关暂态特性的特征信息,利用小波的能量系数作为特征值,使用k近邻算法和决策树算法协同训练分类出负载样本,对测试集进行了算法验证实验,在简化了计算复杂性的基础上获得了更高的识别精度,克服了一对余算法在分类真实负类事件上存在的缺陷,为用电可视化的研究工作打下基础。 相似文献