首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用分步浸渍法制备了不同磷添加方式改性的NiMo/Al2O3催化剂,在固定床微反装置上考察了该系列催化剂对焦炉煤气中噻吩加氢脱硫(HDS)性能的影响,采用BET、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、NH3程序升温脱附(NH3-TPD)、C4H4S(H2)程序升温脱附[C4H4S(H2)-TPD]、X射线光电子能谱(XPS)、高清透射电镜(HRTEM)和拉曼(Raman)等分析手段对催化剂进行表征。结果表明,不同磷添加方式制备NiMo/Al2O3催化剂的HDS性能存在较大差异。其中,催化剂PNi-Mo/Al和PMo-Ni/Al表面弱吸附解离活性位增强,对焦炉煤气中噻吩有较好的低温加氢脱硫活性,以含292.5mg/m3噻吩的模拟焦炉煤气为原料时,PNi-Mo/Al在250℃下对噻吩的脱硫率达61%。对于PNi-Mo/Al和PMo-Ni/Al催化剂,先浸渍P、Ni或者P、Mo时,P优先和载体Al2O3作用,减弱了活性金属组分Ni、Mo与载体间的相互作用,而又防止Ni或者Mo与载体间相互作用过低而聚集,提高了Ni、Mo在载体表面的均匀分散,生成能够促进硫化形成Ⅱ型活性相Ni-Mo-S的NiMoO4物种。NiMoO4和MoO3之间的协同作用提高了催化剂的硫化度,使HDS活性得以提高。  相似文献   

2.
The relationship between the activity and surface molybdenum species of nitrided 12.5% MoO3/Al2O3 was studied in the hydrodenitrogenation (HDN) of carbazole at 573 K and 10.1 MPa total pressure. The surface molybdenum species were determined by the desorption of nitrogen gas during TPD. The surface area of NH3-cooled Mo/Al2O3 nitrided at 773 and 1173 K was decreased by 8% and 61% from 245 m2 g−1 of the fresh MoO3/Al2O3, respectively. The NH3-cooled Mo/Al2O3 catalysts had slightly higher surface area than the He-cooled catalysts. The HDN rate increased with increasing nitriding temperature in the HDN of carbazole on the nitride catalysts. The NH3-cooled Mo/Al2O3 catalysts nitrided at 1173 K were the most active in carbazole HDN and the He-cooled catalyst nitrided at 773 K was the least.  相似文献   

3.
In reverse water gas shift (RWGS) reaction CO2 is converted to CO which in turn can be used to produce beneficial chemicals such as methanol. In the present study, Mo/Al2O3, Fe/Al2O3 and Fe-Mo/Al2O3 catalysts were synthesised using impregnation method. The structures of catalysts were studied using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, inductively coupled plasma atomic emission spectrometer (ICP-AES), temperature programmed reduction (H2-TPR), CO chemisorption, energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) techniques. Kinetic properties of all catalysts were investigated in a batch reactor for RWGS reaction. The results indicated that Mo existence in structure of Fe-Mo/Al2O3 catalyst enhances its activity as compared to Fe/Al2O3. This enhancement is probably due to better Fe dispersion and smaller particle size of Fe species. Stability test of Fe-Mo/Al2O3 catalyst was carried out in a fixed bed reactor and a high CO yield for 60 h of time on stream was demonstrated. Fe2(MoO4)3 phase was found in the structures of fresh and used catalysts. TPR results also indicate that Fe2(MoO4)3 phase has low reducibility, therefore the Fe2(MoO4)3 phase signifificantly inhibits the reduction of the remaining Fe oxides in the catalyst, resulted in high stability of Fe-Mo/Al2O3 catalyst. Overall, this study introduces Fe-Mo/Al2O3 as a novel catalyst with high CO yield, almost no by-products and fairly stable for RWGS reaction.  相似文献   

4.
A new preparation of supported MoO3 is described. Slurry MoO3/water is used instead of the solution (NH4)6Mo7O24. Preparation and HDS activity are illustrated for MoO3 supported over Al2O3, active carbon and ZrO2. Another application of the new principle is the preparation of high surface area MoO3/MgO by the reaction of MgO with slurry (NH4)6Mo7O24/methanol. Texture of MgO that is deteriorated in aqueous solution of (NH4)6Mo7O24 is stable in that slurry. “Slurry impregnation” is a special case of equilibrium adsorption impregnation. It is simple and it provides monolayer dispersion of molybdena.  相似文献   

5.
Co–Mo model sulfide catalysts, in which CoMoS phases are selectively formed, were prepared by means of a CVD technique using Co(CO)3NO as a precursor of Co. It is shown by means of XPS, FTIR and NO adsorption that CoMoS phases form selectively when the Mo content exceeds monolayer loading. A single exposure of MoS2/Al2O3 to a vapor of Co(CO)3NO at room temperature fills the edge sites of the MoS2 particles. It is suggested that the maximum potential HDS activity of MoS2/Al2O3 and Co–Mo/Al2O3 catalysts can be predicted by means of Co(CO)3NO as a “probe” molecule. An attempt was made to determine the fate of Co(CO)3NO adsorbed on MoS2/Al2O3. The effects of the support on Co–Mo sulfide catalysts in HDS and HYD were investigated by use of CVD-Co/MoS2/support catalysts. XPS and NO adsorption showed that model catalysts can also be prepared for SiO2-, TiO2- and ZrO2-supported catalysts by means of the CVD technique. The thiophene HDS activity of CVD-Co/MoS2/Al2O3, CVD-Co/MoS2/TiO2 and CVD-Co/MoS2/Al2O3 is proportional to the amount of Co species interacting with the edge sites of MoS2 particles or CoMoS phases. It is concluded that the support does not influence the HDS reactivity of CoMoS phases supported on TiO2, ZrO2 and Al2O3. In contrast, CoMoS phases on SiO2 show catalytic features characteristic of CoMoS Type II. With the hydrogenation of butadiene, on the other hand, the Co species on MoS2/TiO2, ZrO2 and SiO2 have the same activity, while the Co species on MoS2/Al2O3 have a higher activity.  相似文献   

6.
The effects of the volume and pH of the impregnation solution and of the calcination conditions were examined on the physicochemical and catalytic properties of a 13 wt% MoO3/Al2O3 extrudate catalyst. The Al2O3 support and drying procedures (static conditions without flowing air) were fixed in the preparations. In the present series of catalysts, the amount of crystalline MoO3 was marginally small. It was found that the dispersion of Mo oxide species increased as the volume of the impregnation solution increased, gradually approaching a maximum value. The increase in pH (2–8) of the impregnation solution was found to reduce the dispersion of Mo oxide species. The Mo dispersion increased slightly for the impregnation catalysts as the calcination temperature increased (673–873 K), whereas it decreased for the equilibrium adsorption catalysts. The effects of the calcination atmosphere (with or without flowing air, or with flowing humid air) were very small on the dispersion of Mo oxide species under the present preparation conditions. On the other hand, the methanol oxidation activity of MoO3/Al2O3 was sensitive to the preparation parameters examined here. It was demonstrated by means of EPMA and XPS that a considerable migration of Mo took place during the calcination.

In the present study on the preparation of a 13 wt% MoO3/Al2O3 catalyst, an impact index is proposed to measure the magnitude of the effects of the respective parameter(s) on the physicochemical and catalytic properties. With the Mo dispersion, the effects of the preparation parameter decreased in the order, surface area of the support >> drying process > volume of the impregnation solution > pH, calcination temperature and atmosphere. The size of the impact index for the dispersion of Mo sulfide species is 70–75% of that for the Mo oxide species. The HDS activity of the catalyst was less affected by the preparation parameters than the Mo sulfide dispersion. The preparation parameters affected the segregation of Mo on the outer surface of extrudates in a decreasing order: drying process > volume of the impregnation solution > pH, calcination conditions. It was found that the oxidation of methanol was affected most intensely by the drying procedures. The volume of the impregnation solution, calcination conditions and pH of the impregnation solution also strongly affected the oxidation activity. The impact index suggests that the sensitivity to the preparation variables of the physicochemical and catalytic properties of MoO3/Al2O3 decreases in the order, methanol oxidation activity > surface Mo segregation > Mo oxide dispersion > Mo sulfide dispersion > HDS activity.  相似文献   


7.
Deep hydrodesulphurization (HDS) of dibenzothiophene (DBT) and gas-oil has been carried out on amorphous-silica–alumina (ASA)-supported transition metal sulphides (TMS) under conditions which approach industrial practice. The activity and selectivity of the binary Ni-, Ru- and Pd-promoted Mo catalysts were compared with the monometallic ones (Ru, Ir, Pd, Ni, Mo on ASA). For both HDS of DBT and gas-oil, the observed activity trends were similar; thus, all catalysts were more active with model feed than with gas-oil, and less active than commercial CoMo/Al2O3. The binary catalysts showed larger activity than monometallic ones, with Ni–Mo catalyst being more effective than Ru–Mo or Pd–Mo. For Ni–Mo sample, the X-ray photoelectron and temperature-programmed reduction techniques confirmed that incorporation of Mo minimises metal–support interaction, although the formation of nickel hydrosilicate was not prevented. The consecutive impregnation of calcined Mo/ASA catalyst with precursor solution followed by calcination enhances molybdenum surface exposure in binary samples. As a consequence, the temperature of reduction of MoO3 to molybdenum suboxides is decreased.  相似文献   

8.
Three different supports were prepared with distinct magnesia–alumina ratio x = MgO/(MgO + Al2O3) = 0.01, 0.1 and 0.5. Synthesized supports were impregnated with Co and Mo salts by the incipient wetness method along with 1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid (CyDTA) as chelating agent. Catalysts were characterized by BET surface area, Raman spectroscopy, SEM-EDX and HRTEM (STEM) spectroscopy techniques. The catalysts were evaluated for the thiophene hydrodesulfurization reaction and its activity results are discussed in terms of using chelating agent during the preparation of catalyst. A comparison of the activity between uncalcined and calcined catalysts was made and a higher activity was obtained with calcined MgO–Al2O3 supported catalysts. Two different MgO containing calcined catalysts were tested at micro-plant with industrial feedstocks of heavy Maya crude oil. The effect of support composition was observed for hydrodesulfurization (HDS), hydrodemetallization (HDM), hydrodeasphaltenization (HDAs) and hydrodenitrogenation (HDN) reactions, which were reported at temperature of 380 °C, pressure of 7 MPa and space-velocity of 1.0 h−1 during 204 h of time-on-stream (TOS).  相似文献   

9.
A detailed study on the influence of the addition of molybdenum ions on the catalytic behaviour of a selective vanadium–magnesium mixed oxide catalyst in the oxidation of n-butane has been performed. The catalysts have been prepared by impregnation of a calcined V–Mg–O mixed oxides (23.8 wt% of V2O5) with an aqueous solution of ammonium heptamolybdate, and then calcined, and further characterised by several physico-chemical techniques, i.e. SBET, XRD, FTIR, FT-Raman, XPS, H2-TPR. MgMoO4, in addition to Mg3V2O8 and MgO, have been detected in all the Mo-doped samples. The incorporation of molybdenum modifies not only the number of V5+-species on the catalyst surface and the reducibility of selective sites but also the catalytic performance of V–Mg–O catalysts. The incorporation of MoO3 favours a selectivity and a yield to oxydehydrogenation products (especially butadiene) higher than undoped sample. In this way, the best catalyst was obtained with a Mo-loading of 17.3 wt% of MoO3 and a bulk Mo/V atomic ratio of 0.6. From the comparison between the catalytic properties and the catalyst characterisation of undoped and Mo-doped V–Mg–O catalysts, the nature of selective sites in the oxidative dehydrogenation of n-butane is also discussed.  相似文献   

10.
The preparation of alumina-supported β-Mo2C, MoC1−x (x≈0.5), γ-Mo2N, Co–Mo2C, Ni2Mo3N, Co3Mo3N and Co3Mo3C catalysts is described and their hydrodesulfurization (HDS) catalytic properties are compared to conventional sulfide catalysts having similar metal loadings. Alumina-supported β-Mo2C and γ-Mo2N catalysts (Mo2C/Al2O3 and Mo2N/Al2O3, respectively) are significantly more active than sulfided MoO3/Al2O3 catalysts, and X-ray diffraction, pulsed chemisorption and flow reactor studies of the Mo2C/Al2O3 catalysts indicate that they exhibit strong resistance to deep sulfidation. A model is presented for the active surface of Mo2C/Al2O3 and Mo2N/Al2O3 catalysts in which a thin layer of sulfided Mo exposing a high density of sites forms at the surface of the alumina-supported β-Mo2C and γ-Mo2N particles under HDS conditions. Cobalt promoted catalysts, Co–Mo2C/Al2O3, have been found to be substantially more active than conventional sulfided Co–MoO3/Al2O3 catalysts, while requiring less Co to achieve optimal HDS activity than is observed for the sulfide catalysts. Alumina-supported bimetallic nitride and carbide catalysts (Ni2Mo3N/Al2O3, Co3Mo3N/Al2O3, Co3Mo3C/Al2O3), while significantly more active for thiophene HDS than unpromoted Mo nitride and carbide catalysts, are less active than conventional sulfided Ni–Mo and Co–Mo catalysts prepared from the same oxidic precursors.  相似文献   

11.
Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors (supported phospho-tungstate catalysts) in H2 and characterized by X-ray diffraction (XRD), BET, temperature-programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS). The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis (TG-DTA) and the suitable phosphiding temperatures were defined. The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of the catalysts were tested by using thiophene, pyridine, dibenzothiophene, carbazole and diesel oil as the feedstock. The TiO2, ?-Al2O3 supports and the Ni, Co promoters could remarkably increase and stabilize active W species on the catalyst surface. A suitable amount of Ni (3%–5%), Co (5%–7%) and V (1%–3%) could increase dispersivity of the W species and the BET surface area of the WP/?-Al2O3 catalyst. The WP/?-Al2O3 catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene (DBT) HDS and pyridine HDN activities. The Ni, Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/?-Al2O3 catalyst. The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/?-Al2O3 catalyst. In general, a support or promoter in the WP/?-Al2O3 catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.  相似文献   

12.
A series of Mo and NiMo catalysts supported on Al-containing MCM-41 was prepared and characterized by N2 physisorption, XRD, ammonia TPD, temperature programmed reduction (TPR), UV-Vis diffuse reflectance spectroscopy (DRS) and 27Al MAS-NMR. It was shown that the incorporation of Al atoms into the siliceous MCM-41 framework causes a deterioration of the textural characteristics and some loss in the periodicity of the MCM-41 pore structure. However, the acidity of the Al-containing MCM-41 is substantially higher. The dispersion of Mo and Ni oxidic species increases with the incorporation of aluminum in the MCM-41 support due to the strong interaction of Mo and Ni oxidic species with aluminum atoms of the support. However, the strong interaction of metal species with the Al-containing MCM-41 supports, up to the formation of Al2(MoO4)3 in the case of unpromoted Mo catalysts, produces an increase in the proportion of Ni and Mo species difficult to reduce. When Ni and Mo are impregnated simultaneously the formation of Al2(MoO4)3 is prevented because of the competitive interaction of both, Ni and Mo species, with Al atoms of the support. For both, Mo and NiMo catalysts, maximum catalytic activity in dibenzothiophene (DBT) hydrodesulfurization is observed for the catalysts supported on Al-MCM-41 with SiO2/Al2O3 molar ratio of 30. When Al-containing MCM-41 is used as a support for NiMo catalyst, some cracking of the main reaction products (biphenyl (BiP), cyclohexylbenzene (CHB) and dicyclohexyl (DCH)) is observed.  相似文献   

13.
The selective catalytic hydrogenation of naphthalene to high-value tetralin was systematically investigated. A series of Al2O3 catalysts containing different active metals (Co, Mo, Ni, W) were prepared by incipient wetness impregnation. The effects of different active metals forms (oxidation, reduction, sulfuration) and reaction conditions on naphthalene hydrogenation were investigated and the catalysts were characterized by XRD, XPS, BET, NH3- TPD and SEM. Especially, Ni-Mo/Al2O3 was first used in this reactive system. The results show that the oxidative 4%NiO-20%MoO3/Al2O3 is the best catalyst for the preparation of tetralin. The conversion of naphthalene and the selectivity of tetralin can reach 95.62% and 99.75% respectively at 200 ℃, 8 h and 6 MPa. Compared with reduced and sulfureted 4%NiO-20%MoO3/Al2O3 catalysts, oxidative 4%NiO-20%MoO3/Al2O3 has a well dispersed and uniform monolayer of the active metals, larger pore volume and size, and larger total acidity. NiO-MoO3/Al2O3 has a synergistic effect between NiO activity and MoO3 selectivity.  相似文献   

14.
In this work, we explored the potential of mesoporous zeolite-supported Co–Mo catalyst for hydrodesulfurization of petroleum resids, atmospheric and vacuum resids at 350–450°C under 6.9 MPa of H2 pressure. A mesoporous molecular sieve of MCM-41 type was synthesized; which has SiO2/Al2O3 ratio of about 41. MCM-41 supported Co–Mo catalyst was prepared by co-impregnation of Co(NO3)2·6H2O and (NH4)6Mo7O24 followed by calcination and sulfidation. Commercial Al2O3 supported Co–Mo (criterion 344TL) and dispersed ammonium tetrathiomolybdate (ATTM) were also tested for comparison purposes. The results indicated that Co–Mo/MCM-41(H) is active for HDS, but is not as good as commercial Co–Mo/Al2O3 for desulfurization of petroleum resids. It appears that the pore size of the synthesized MCM-41 (28 Å) is not large enough to convert large-sized molecules such as asphaltene present in the petroleum resids. Removing asphaltene from the resid prior to HDS has been found to improve the catalytic activity of Co–Mo/MCM-41(H). The use of ATTM is not as effective as that of Co–Mo catalysts, but is better for conversions of >540°C fraction as compared to noncatalytic runs at 400–450°C.  相似文献   

15.
A new preparation method for supported MoO3 catalyst, slurry impregnation, has been described and compared with the conventional impregnation method. Slurry MoO3/water is used instead of the solution ammonium heptamolybdate, AHM [(NH4)6Mo7O24]. The MoO3/γ-alumina, MoO3/active carbon, and MoO3/silica catalysts with different Mo loadings were prepared by slurry and by conventional method. The low solubility of MoO3 was sufficient to transport molybdenum species from solid MoO3 to the adsorbed phase. The equilibrium was achieved after several hours at 95 °C based on the loading amount of molybdenum. Only the process of drying was needed; calcination was not necessary and was left out. This is an important advantage for active carbon support because oxidative degradation of active carbon impregnated by molybdena starts at a relatively low temperature of about 250 °C during calcination on air. The activity was tested in the transesterification of dimethyl oxalate (DMO) and phenol at 180 °C. The dependences of catalytic activity on Mo loadings for the slurry prepared catalysts were similar to the dependences for the samples prepared by the conventional impregnation method with AHM. The activities of the slurry impregnation MoO3/γ-Al2O3 catalysts were almost the same as those of catalysts prepared conventionally. Although the performances of slurry impregnation MoO3/SiO2 catalysts for transesterification of DMO were slightly better than those of the corresponding catalysts prepared by conventional impregnation, no waste solution and no calcining nitrogenous gases were produced. Therefore, we conclude that the new slurry impregnation method for preparation of supported molybdenum catalysts is an environmentally friendly process and a simple, clean alternative to the conventional preparation using solutions of (NH4)6Mo7O24. The present work will lead to a remarkable improvement in the catalyst preparation for the transesterification reaction.  相似文献   

16.
Ni/Al2O3 catalyst modified by small amounts of Mo show unusual properties in the steam reforming of hydrocarbons. There are no data about the effect of small amounts of molybdenum on reduction of the Ni-Mo supported catalysts. The properties of these very complex systems depend on the conditions of successive preparation stages (calcination, reduction) or the process conditions.

A series of Ni/Al2O3 catalysts modified by Mo were prepared in order to investigate the influence of promoter amounts and preparation sequence on their properties. Temperature programmed reduction (TPR) has been employed to study the reducibility of Ni-Mo/Al2O3 catalysts. Catalysts were further characterized by BET area, H2 chemisorption and X-ray diffraction measurements.

The TPR curves of Ni-Mo/Al2O3 catalysts are very complex. Mo addition leads to the decrease of catalysts reducibility. However, complete reduction of NiO and MoO3 can be achieved at 800 °C. The reduction course depends on the sequence of nickel and molybdenum addition into the support. Precise measurements of Ni peaks positions in the XRD pattern of Ni/Al2O3 and Ni-Mo/Al2O3 samples show the possibility of Ni-Mo solid solution formation.  相似文献   


17.
The siliceous and the metal substituted (B or Al)-SBA-15 molecular sieves were used as a support for NiMo hydrotreating catalysts (12 wt.% Mo and 2.4 wt.% Ni). The supports were characterized by X-ray diffraction (XRD), scanning electron microscopy and N2 adsorption–desorption isotherms. The SBA-15 supported NiMo catalysts in oxide state were characterized by BET surface area analysis and XRD. The sulfided NiMo/SBA-15 catalysts were examined by DRIFT of CO adsorption and TPD of NH3. The HDN and HDS activities with bitumen derived light gas oil at industrial conditions showed that Al substituted SBA-15 (Al-SBA-15) is the best among the supports studied for NiMo catalyst. A series of NiMo catalysts containing 7–22 wt.% Mo with Ni/Mo weight ratio of 0.2 was prepared using Al-SBA-15 support and characterized by BET surface area analysis, XRD and temperature programmed reduction and DRIFT spectroscopy of adsorbed CO. The DRIFT spectra of adsorbed CO showed the presence of both unpromoted and Ni promoted MoS2 sites in all the catalysts, and maximum “NiMoS” sites concentration with 17 wt.% of Mo loading. The HDN and HDS activities of NiMo/Al-SBA-15 catalysts were studied using light gas oil at temperature, pressure and WHSV of 370 °C, 1300 psig and 4.5 h−1, respectively. The NiMo/Al-SBA-15 catalyst with 17 wt.% Mo and 3.4 wt.% of Ni is found to be the best catalyst. The HDN and HDS activities of this catalyst are comparable with the conventional Al2O3 supported NiMo catalyst in real feed at industrial conditions.  相似文献   

18.
The effect of adding Co, Ni or La on the methanation activity of a Mo-based sulfur-resistant catalyst was investigated. As promoters, Co, Ni and La all improved the methanation activity of a 15% MoO3/Al2O3 catalyst but to different extents. Similar improvements were also found when Co, Ni or La was added to a 15% MoO3/25%-CeO2-Al2O3 catalyst. The promotion effects of Co and Ni were better than that of La. However, the catalytic methanation activity deteriorated the most with time for the Ni-promoted catalyst. The used catalysts were analyzed by nitrogen adsorption measurement, X-ray diffraction and X-ray photoelectron spectroscopy.  相似文献   

19.
Development of new catalysts for deep hydrodesulfurization of gas oil   总被引:3,自引:0,他引:3  
TiO2–Al2O3 composite supports have been prepared by chemical vapor deposition (CVD) over γ-Al2O3 substrate, using TiCl4 as the precursor. High dispersion of TiO2 overlayer on the surface of Al2O3 has been obtained, and no cluster formation has been detected. The catalytic behavior of Mo supported on Al2O3, TiO2 and TiO2–Al2O3 composite has been investigated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT) and methyl-substituted DBT derivatives. The conversion over the Mo catalysts supported on TiO2–Al2O3 composite, in particular for the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT) is much higher than that of conversion obtained over Mo catalyst supported on Al2O3. The ratio of the corresponding cyclohexylbenzenes/biphenyls is increased over Mo catalyst supported on TiO2–Al2O3 composite support. This means that the reaction rate of prehydrogenation of an aromatic ring rather than the rate of hydrogenolysis of C–S bond cleavage is accelerated for the HDS of DBT derivatives. The Mo/TiO2–Al2O3 catalyst leads to higher catalytic performance for deep HDS of gas oil.  相似文献   

20.
Alumina–titania supports containing 5–50 wt.% of TiO2 were prepared by coprecipitation method using inorganic precursors (sodium aluminate and titanium chloride). DTA-TGA, XRD, SEM, TPDNH3, and IR spectroscopy were used to characterise these materials. The study shows that the promoting effect of nickel on the HDS activity of molybdenum catalysts supported on Al2O3TiO2 is significantly lower than that for molybdenum catalyst supported on Al2O3, and depends on the TiO2 content. The SEM results show that in the case of rich Al support (20 wt.% of TiO2) molybdenum was aggregated on the external surface of the catalyst, whereas it was uniformly dispersed on the external surface of alumina. Results also show that molybdenum is preferably supported on aluminum oxide. Application of Al2O3TiO2 oxides enhances the HDN activity of nickel–molybdenum catalysts. The highest HDN efficiency was obtained for the NiMo/Al2O3TiO2 catalyst containing 50 wt.% of TiO2. HDN activity was found to depend on protonic acidity and anatase content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号