首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
《动力工程学报》2015,(11):929-933
以天然气为燃料,建立了外部重整固体氧化物燃料电池(SOFC)系统的实验平台,在不同重整工艺参数条件下,对电池堆的性能进行了测试,得到了电池堆性能参数的变化趋势,分析了水碳物质的量比(即水碳比)、重整温度、重整方式以及天然气体积流量对SOFC电池堆性能的影响.结果表明:在不同的电流密度下,采用水蒸气重整方式电池堆的输出功率高于自热重整方式电池堆的输出功率;当电池堆工作温度设定恒值为1 023K时,随着水碳比的增大,电池堆的输出功率逐渐提高,随着天然气体积流量的增加,电池堆的输出功率显著提高.  相似文献   

2.
基于顶层循环的SOFC/MGT混合发电系统,提出了CO2准零排放SOFC/MGT混合发电新系统:经电池堆阳极产物分离出氢气后采用纯氧燃烧,用冷凝的办法除去水蒸气,从而捕获CO2气体。阴极产物与分离得到的氢气则在另外的后燃室燃烧。结合案例分析了该混合发电新系统的性能,研究了CO2液化温度对系统的影响。与其它CO2准零排放发电系统相比,本研究提出的CO2准零排放SOFC/MGT混合发电新系统具有更高发电效率。研究结果将为CO2准零排放发电系统的研究提供有益参考。  相似文献   

3.
固体氧化物燃料电池(SOFC)系统具有高能源效率和使用可再生燃料的可能性,将在未来的可持续能源系统中发挥重要作用。过去几年燃料电池的发展很快,但在成本、稳定性和市场份额方面,该技术仍处于早期发展阶段。在以天然气为燃料的SOFC系统中,燃料的重整过程和燃料利用水平都可能影响系统运行的稳定性、热量和能量平衡,从而影响系统的使用寿命、输出功率和效率。因此,对燃料重整过程的设计与控制对有效的SOFC电池运行具有重要意义。对天然气在SOFC系统中的重整器配置方式(包括外重整和内重整)、重整参数和重整燃料利用方式进行了详细的综述分析,并对未来天然气SOFC系统的发展进行了展望。  相似文献   

4.
联合使用可计算表面反应的化学反应动力学软件CHEMKIN4.0和CFD软件,对平板微反应器中Ni催化剂涂层上的甲烷蒸汽重整制合成气进行了数值计算,并结合表面活性组分的分布分析了微通道长度、高度对蒸汽重整性能的影响.计算结果表明:甲烷蒸汽重整受CO(S)的解吸速率控制;反应通道高度减小,从而减少反应物和产物在通道中扩散所需要的时间并增大反应控制组分CO(S)的表面覆盖率,使得甲烷的转化率和产物中的氢含量提高;反应通道长度增大,反应物与催化剂的接触时间延长,甲烷的转化率和氢含量提高.这对进行微通道甲烷蒸汽重整的实验研究以及平板微通道反应器的设计和优化提供了理论依据.  相似文献   

5.
提出了一种固体氧化物燃料电池(SOFC)-微型燃气轮机(MGT)混合发电系统的半实物仿真和预集成方案.该方案以基于模型的燃烧器和涡轮增压器分别作为SOFC模拟器和MGT模拟器,克服了现有的试验系统均只适用于单一工作方式和传统的慢速迭代控制算法的缺点,可以兼容增压型和常压型两种工作模式,适用于正常运行、启动、部分负荷和瞬态等多种工况的模拟.通过对比传统的慢速迭代控制算法开发模式,探讨了基于Matlab/xPC Target和PowerPC5xx的快速控制原型的V型控制器开发模式.  相似文献   

6.
在作者已开发的SOFC单电池结构及其阳极上甲烷重整的有效动力学模型的基础上,构建了直接内部重整的平板式多孔电极支撑(PES)固体氧化物燃料电池(SOFC)的全三维数学模型,根据模型分析了SOFC在不同进气模式顺流和逆流工况下,单电池内的流动、传热传质、化学、电化学和电流场等物理过程,给出了单电池内气体组分、温度、电势、电流密度等参数的空间分布。分析结果表明:进气方式对于电池的性能有一定的影响,与顺流相比在相同工况下燃用同样的燃料,采用逆流进气口电池的运行性能虽然略有提高,但是电池阳极内存在较高温度的热点,并且热点的位置不确定。  相似文献   

7.
基于GT-Power并耦合层流火焰速度经验公式开展了甲醇和甲醇重整气对直喷汽油机性能影响的对比分析。首先分别基于双燃料层流火焰速度经验公式,求取了异辛烷-甲醇和汽油-甲醇重整气层流火焰速度,根据层流火焰速度计算出燃烧持续期,作为燃烧模型的输入变量,进而探讨了汽油掺混不同比例的甲醇及甲醇重整气对发动机性能的影响规律。研究结果表明:掺混甲醇重整气与直接掺混甲醇相比,发动机有效热效率和输出转矩明显增加,当量比油耗降低,CO排放水平相当,但NOx排放增加。尤其在稀燃条件下,掺混甲醇重整气使热效率增加明显,这说明燃料重整方式在提高直喷汽油机热效率方面更有应用潜力。  相似文献   

8.
针对以氢气为燃料的动力系统运行条件需求,构建了甲醇重整反应热力学和化学平衡反应体系,以某功率型号燃料电池/燃气轮机(Solid Oxide Fuel Cell/Gas Turbine, SOFC/GT)混合动力系统为研究对象,分析其额定工况、变工况运行时,温度、水碳比和压力对各重整产物分布及产氢率的影响。结果表明:额定运行工况下,重整产物中H_2摩尔分数为49.8%,碳沉积现象消失;在变工况运行时温度对重整反应的热力学特性和化学平衡特性影响较大,当温度为912 K时产氢率达到峰值2.547,当温度为910 K时碳沉积现象消失,当温度高于912 K时不利于H_2的产生;水碳比增加有利于提升产氢率,降低H_2摩尔分数,减少积碳和CO的产生,当水碳比为2时产氢率达到2.48,当水碳比为1.25时碳沉积现象消失;压力对重整结果的影响相对较小,在温度为650~910 K时,降低压力有利于提高产氢率。  相似文献   

9.
柴油废气重整的化学反应动力学模拟   总被引:1,自引:1,他引:0  
柴油废气重整不仅可以利用柴油机废气的热量,而且重整产物(富氢混合气)还能有效改善柴油机的性能.论文介绍了柴油废气重整制氢的基本概念和反应机理,以正庚烷代替柴油,利用CHEMKIN软件建立了柴油废气重整反应的化学动力学模型,该模型包括37种组分和58个反应.论文模拟研究了反应温度和水碳比对柴油废气重整反应的影响.模拟分析结果表明:反应温度和反应物的水碳比(molH2O/molC)对重整反应有较大的影响.  相似文献   

10.
固体氧化物燃料电池(SOFC)是一种高效低污染的新型能源。建立了以天然气为燃料的固体氧化物燃料电池和燃气轮机(GT)联合发电系统的计算模型,并对具体系统进行计算。结果表明:SOFC与GT组戍的联合发电系统,发电效率可达68%(LHV);加上利用的余热,整个系统的能量利用率可以超过80%。文中还分析了SOFC的工作压力、电流密度等参数对系统性能的影响,提高工作压力,可以增加电池发电量,提高系统的发电效率;而电流密度的增大将使SOFC及整个系统的发电量降低。  相似文献   

11.
Analysis of electricity generation efficiency of the biomass SOFC–MGT hybrid system has been made for several cases of different composition of fuel relevant to typical air-, oxygen- and steam-blown biomass gasification processes. Reference case for comparison is the one where pure methane is used as fuel. In the analysis, multi-stage model for internal reforming SOFC module developed previously has been used with some modification. It is found that efficiency achieved for all the three cases of different types for biomass fuel is reasonably high and so that the biomass SOFC–MGT hybrid system is promising. However, in all the three cases, efficiency is lower than the counterpart of pure methane case, both in the SOFC module and in the hybrid system. Among the biomass fuel cases, efficiency is found to be highest with steam-blown biomass fuel both for the SOFC module and for the hybrid system. The lowest efficiency is found in the case of air-blown fuel. In addition, effects of higher steam content in the biomass fuel and variety in composition of biomass fuel for each gasifying agent are also studied.  相似文献   

12.
Solid oxide fuel cell–micro-gas turbine (SOFC–MGT) hybrid power plants integrate a solid oxide fuel cell and a micro-gas turbine and can achieve efficiencies of over 60% even for small power outputs (200–500 kW). The SOFC–MGT systems currently developed are fueled with natural gas, which is reformed inside the same stack, but the use of alternative fuels can be an interesting option. In particular, as the reforming temperature of methanol and di-methyl-ether (DME) (200–350 °C) is significantly lower than that of natural gas (700–900 °C), the reformer can be sited outside the stack. External reforming in SOFC–MGT plants fueled by methanol and DME enhances efficiency due to improved exhaust heat recovery and higher voltage produced by the greater hydrogen partial pressure at the anode inlet. The study carried out in this paper shows that the main operating parameters of the fuel reforming section (temperature and steam-to-carbon ratio (SCR)) must be carefully chosen to optimise the hybrid plant performance. For the stoichiometric SCR values, the optimum reforming temperature for the methanol fueled hybrid plant is approximately 240 °C, giving efficiencies of about 67–68% with a SOFC temperature of 900 °C (the efficiency is about 72–73% at 1000 °C). Similarly, for DME the optimum reforming temperature is approximately 280 °C with efficiencies of 65% at 900 °C (69% at 1000 °C). Higher SCRs impair stack performance. As too small SCRs can lead to carbon formation, practical SCR values are around one for methanol and 1.5–2 for DME.  相似文献   

13.
Solid oxide fuel cell and micro gas turbine (SOFC/MGT) hybrid system is a promising distributed power technology. In order to ensure the system safe operation as well as long lifetime of the fuel cell, an effective control manner is expected to regulate the temperature and fuel utilization at the desired level, and track the desired power output. Thus, a multi-loop control strategy for the hybrid system is investigated in this paper. A mathematical model for the SOFC/MGT hybrid system is built firstly. Based on the mathematical model, control cycles are introduced and their design is discussed. Part load operation condition is employed to investigate the control strategies for the system. The dynamic modeling and control implementation are realized in the MATLAB/SIMULINK environment, and the simulation results show that it is feasible to build the multi-loop control methods for the SOFC/MGT hybrid system with regard to load disturbances.  相似文献   

14.
For a solid oxide fuel cell (SOFC) integrated into a micro gas turbine (MGT) hybrid power system, SOFC operating temperature and turbine inlet temperature are the key parameters, which affect the performance of the hybrid system. Thus, a least squares support vector machine (LS-SVM) identification model based on an improved particle swarm optimization (PSO) algorithm is proposed to describe the nonlinear temperature dynamic properties of the SOFC/MGT hybrid system in this paper. During the process of modeling, an improved PSO algorithm is employed to optimize the parameters of the LS-SVM. In order to obtain the training and prediction data to identify the modified LS-SVM model, a SOFC/MGT physical model is established via Simulink toolbox of MATLAB6.5. Compared to the conventional BP neural network and the standard LS-SVM, the simulation results show that the modified LS-SVM model can efficiently reflect the temperature response of the SOFC/MGT hybrid system.  相似文献   

15.
燃料电池与燃气轮机混合发电系统有着很高的能量利用效率,是能量转换的重要研究方向。而固体氧化物燃料电池的蒸汽重整技术为该联合提供了重要的技术支持。本文设计了固体氧化物燃料电池的结构,并进行甲烷蒸汽重整的模拟计算,计算结果显示燃料电池排气温度达到1380K左右时,有很高的能量利用价值。  相似文献   

16.
Solid oxide fuel cell (SOFC) integrated into micro gas turbine (MGT) cycle is a promising power‐generation technology. This article proposes a modified output–input feedback (OIF) Elman neural network model to describe the nonlinear temperature and power dynamic properties of the SOFC/MGT hybrid system. A physics‐based mathematical model of a 220 kW SOFC/MGT hybrid power system is used to generate the data required for the training and prediction of the modified OIF Elman neural network identification model. Compared with the conventional Elman neural network, the simulation results show that the modified OIF Elman identification model can follow the temperature and power response of the SOFC/MGT hybrid system with higher prediction accuracy and faster convergent speed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
For a solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid system, optimal control of load changes requires optimal dynamic scheduling of set points for the system's controllers. Thus, this paper proposes an improved iterative particle swarm optimization (PSO) algorithm to optimize the operating parameters under various loads. This method combines the iteration method and the PSO algorithm together, which can execute the discrete PSO iteratively until the control profile would converge to an optimal one. In MATLAB environment, the simulation results show that the SOFC/MGT hybrid model with the optimized parameters can effectively track the output power with high efficiency. Hence, the improved iterative PSO algorithm can be helpful for system analysis, optimization design, and real‐time control of the SOFC/MGT hybrid system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Multi-energy complementary distributed energy system integrated with renewable energy is at the forefront of energy sustainable development and is an important way to achieve energy conservation and emission reduction. A comparative analysis of solid oxide fuel cell (SOFC)-micro gas turbine (MGT)-combined cooling, heating and power (CCHP) systems coupled with two solar methane steam reforming processes is presented in terms of energy, exergy, environmental and economic performances in this paper. The first is to couple with the traditional solar methane steam reforming process. Then the produced hydrogen-rich syngas is directly sent into the SOFC anode to produce electricity. The second is to couple with the medium-temperature solar methane membrane separation and reforming process. The produced pure hydrogen enters the SOFC anode to generate electricity, and the remaining small amount of fuel gas enters the afterburner to increase the exhaust gas enthalpy. Both systems transfer the low-grade solar energy to high-grade hydrogen, and then orderly release energy in the systems. The research results show that the solar thermochemical efficiency, energy efficiency and exergy efficiency of the second system reach 52.20%, 77.97% and 57.29%, respectively, 19.05%, 7.51% and 3.63% higher than those of the first system, respectively. Exergy analysis results indicate that both the solar heat collection process and the SOFC electrochemical process have larger exergy destruction. The levelized cost of products of the first system is about 0.0735$/h that is lower than that of the second system. And these two new systems have less environmental impact, with specific CO2 emissions of 236.98 g/kWh and 249.89 g/kWh, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号