首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 59 毫秒
1.
刘朝华  章兢  李小花  张英杰 《自动化学报》2012,38(10):1698-1708
针对永磁同步电机多参数辨识问题,提出一种基于免疫协同微粒群进化(Immune co-evolution particle swarm optimization, ICPSO) 算 法的永磁同步电机(Permanent magnet synchronous motor, PMSM) 多参数辨识方法.算法由记忆种群与若干个普通种群构成, 在进化过程中普通种群中优秀个体进入记忆库种群.普通种群内部通过精英粒子 保留、免疫网络以及柯西变异等混合策略共同产生新个体,个体极值采用小波学习 加快收敛速度,免疫克隆选择算法对记忆库进行精细搜索,迁移机制实现了整个种群 的信息共享与协同进化.永磁同步电机参数辨识结果表明该方法不需要知道电 机设计参数先验知识,能够有效地辨识电机电阻、 dq轴电感与转子磁链,且能有效追踪该参数变化值.  相似文献   

2.
刘三阳  靳安钊 《自动化学报》2018,44(9):1690-1697
对约束优化问题,为了避免罚因子和等式约束转化为不等式约束时引入的约束容忍度参数所带来的不便,本文在基本教与学优化(Teaching-learning-based optimization,TLBO)算法中加入了自我学习过程并提出了一种求解约束优化问题的协同进化教与学优化算法,使得罚因子和约束容忍度随种群的进化动态调整.对7个常见测试函数的数值实验验证了算法求解带有等式和不等式约束优化问题的有效性.  相似文献   

3.
多策略协同进化粒子群优化算法   总被引:1,自引:0,他引:1  
张洁  裴芳 《计算机应用研究》2013,30(10):2965-2967
为了提高粒子群优化(PSO)算法的优化性能, 提出了一种多策略协同进化PSO(MSCPSO)算法。该方法引入了多策略进化模式和多子群协同进化机制, 将整个种群划分为多个子群, 每个子群中的粒子按照不同的进化策略产生新的粒子。子群周期性地更新共享信息, 以加快算法的收敛速度。通过六个基准函数实验, 仿真结果表明, 新算法在计算精度和收敛速度方面均优于其他七种PSO算法。  相似文献   

4.
韦铭燕  陈彧  张亮 《计算机应用》2021,41(5):1412-1418
针对由连续变量和分类变量构成的混合变量优化问题(MVOP),采用协同进化策略来对混合变量决策空间进行搜索,提出了一种协同进化蚁群优化算法(CACOAMV).CACOAMV分别采用连续和离散蚁群优化(ACO)策略生成连续和分类变量子种群,通过合作者来对连续和分类变量子向量进行评价,分别对连续和分类变量子种群进行更新来实现...  相似文献   

5.
基于合作型协同进化模型,提出了一种新型的多目标优化进化算法.该算法使用精英保留的思想以加快收敛速度,并采用一种新型的子群体间合作方式,提高了候选解的多样性,且避免了在一般多目标优化进化算法中难以处理的适应值分配或非支配排序过程,从而大大减小了计算资源的消耗.使用图形法和三种定量的测度将所提算法与一种经典的多目标优化进化算法NSGA-Ⅱ在一组标准测试函数上进行了比较,结果表明算法具有更高的搜索效率.  相似文献   

6.
基于分而治之的策略,研究求解大规模优化问题的新方法。首先,基于加性可分性原理提出一种改进的变量分组方法,该方法以随机取点的方式,成对检测所有变量之间的相关性;同时,充分利用相关性学习的信息,对可分变量组进行再次降维;其次,引入改进的差分进化算法作为新型子问题优化器,增强了子空间的寻优性能;最后,将两项改进引入到协同进化框架构建DECC-NDG-CUDE算法。在10个选定的大规模优化问题上进行分组和优化两组仿真实验,分组实验结果表明新的分组方法能有效识别变量的相关性,是有效的变量分组方法;优化实验表明,DECC-NDG-CUDE算法对10个问题的求解相对于两种知名算法DECC-DG、DECCG在性能上具备整体优势。  相似文献   

7.
随着复杂网络及大数据技术的发展,大规模全局优化方法已成为复杂工程系统的重要支撑技术.解决大规模全局优化问题的关键在于如何识别决策变量之间的相互依赖关系并根据这些依赖关系进行有效的变量分组.针对该问题,本文提出了一种基于形式概念分析的大规模全局协同进化优化算法,首次将数据分析领域的形式概念分析思想引入决策变量依赖关系分析...  相似文献   

8.
《软件》2019,(8):152-155
为了进一步提高粒子群优化算法的寻优精度,并改善收敛速度慢的问题,本文基于传统的粒子群优化算法,借鉴协同进化的思想和共生机制,提出了将协同进化算法和粒子群算法相结合的算法模型(CEA-PSO)。群体内部采用精英保留策略保留精英个体,将个体的进化和群体之间发生信息交换,达到优势互补的效果。实验结果表明,协同进化策略的粒子群优化算法精度更高,优化性能更佳。  相似文献   

9.
针对差分进化算法在处理函数优化时存在的过早收敛和易陷入局部最优的问题,提出了一种基于精英种群策略的协同差分进化算法。在优化过程中,首先对种群进行适应度值评估和排序,提取前N个优秀个体组成精英种群,其余个体随机分为3个等大的子种群,每个子种群采取不同的进化策略,以此来保证种群的多样性;然后每隔一定代数,根据新的适应度值更新精英种群和其余3个子种群,这样可以有效地避免算法陷入局部最优;最后,将所提出的算法与4个先进的差分进化算法在CEC2014的30个标准测试函数上进行对比实验。实验结果表明,所提出的算法能够有效提高收敛速度,具有较高的收敛精度和较好的优化性能。  相似文献   

10.
针对高维优化问题难以解决并且优化耗费时间长的问题,提出了一种解决高维优化问题的差分进化算法。将协同进化思想引入到差分进化领域,采用一种由状态观测器和随机分组策略组成的协同进化方案。其中,状态观测器根据搜索状态反馈信息适时地调用随机分组策略重新分组;随机分组策略将高维优化问题分解为若干较低维的子问题,而后分别进化。该方案有效地增强了算法解决高维优化问题的搜索速度和搜索能力。经典型的实例测试,并与其他一流差分进化算法比较,实验结果表明:所提算法能有效地求解不同类型的高维优化问题,在搜索速度方面有明显提升,尤其对可分解的高维优化问题极具竞争力。  相似文献   

11.
为改善布谷鸟搜索算法求解连续函数优化问题的性能,提出合作协同进化的布谷鸟搜索算法.改进算法通过应用合作协同进化框架,将种群的解向量分解成若干子向量,并构成相应子群体.利用标准布谷鸟算法更新各子群体的解向量.各子群体为其它子群体提供最优个体,组合成问题解向量并完成子群体评价.经10个测试函数实验仿真,结果说明改进算法能有效改善求解连续函数优化问题的性能.同时,针对连续函数优化问题,该算法与其它算法相比是有竞争力的优化算法.  相似文献   

12.
苏生  于海杰  吴正华  姚远哲  张良 《软件学报》2013,24(6):1165-1176
研究了在制造商占优并优先调度的分销供应链中,多个分销商同时与制造商进行协商以改善自身调度的问题,建立了基于补偿的多目标协商调度模型,提出了同时实施分销商局部演化计算与制造商全局演化计算的新型多目标合作协同演化算法 GLCCEC.提出了制造商全局精英解的跳跃渐变解组合策略及全局非支配解集实时更新策略,设计了保持局部作业顺序约束下的分销商局部解全局化动态规划算法.实验结果表明,GLCCEC算法能够在不损害制造商调度的条件下有效改善每个分销商的调度,所获得的非支配解集不仅目标值优于现有的3种主要合作协同演化算法MOCCGA,NSCCGA,GBCCGA,而且具有良好的解分散度.  相似文献   

13.
崔晓晖  印桂生  董红斌 《软件学报》2015,26(7):1601-1614
服务匹配是服务发现的主要环节.目前,原子服务匹配过程主要存在服务匹配概念狭窄、匹配算法的时间复杂度较高及匹配方案的表示难以被智能优化算法处理等问题.针对上述问题,在原子服务匹配的基础上引入复合服务匹配、抽象复合服务匹配过程的适应度函数及约束条件,设计适用于智能优化算法处理的匹配方案的表示方法.同时,结合协同演化算法设计思路,提出基于粒子群和模拟退火的协同演化算法(PSO-SA),用以求解复合服务匹配.实验结果表明:与现有智能优化算法相比,PSO-SA可在有限迭代次数内获得精度较高的匹配结果,对不同维度的服务匹配问题具有较高的适应性,可用于提高服务发现结果的质量.  相似文献   

14.
提出一种协同演化聚类算法,该算法使用改进的掩码方式动态决定聚类中心的数目。将种群划分成两个子种群,分别采用遗传算法和差分进化算法进行演化,遗传算法侧重于全局寻优,差分进化算法注重于局部搜索。在演化的过程中,利用不同的间隔迁移策略相互交换优良个体,使算法的全局探索能力和局部搜索能力得到均衡。通过性能测试、聚类中心数目和运行时间测试等实验证明该算法的优越性。  相似文献   

15.
With the proliferation of sensors, semantic web technologies are becoming closely related to sensor network. The linking of elements from semantic web technologies with sensor networks is called semantic sensor web whose main feature is the use of sensor ontologies. However, due to the subjectivity of different sensor ontology designer, different sensor ontologies may define the same entities with different names or in different ways, raising so-called sensor ontology heterogeneity problem. There are many application scenarios where solving the problem of semantic heterogeneity may have a big impact, and it is urgent to provide techniques to enable the processing, interpretation and sharing of data from sensor web whose information is organized into different ontological schemes. Although sensor ontology heterogeneity problem can be effectively solved by Evolutionary Algorithm (EA)-based ontology meta-matching technologies, the drawbacks of traditional EA, such as premature convergence and long runtime, seriously hamper them from being applied in the practical dynamic applications. To solve this problem, we propose a novel Compact Co-Evolutionary Algorithm (CCEA) to improve the ontology alignment’s quality and reduce the runtime consumption. In particular, CCEA works with one better probability vector (PV) \(PV_{better}\) and one worse PV \(PV_{worse}\), where \(PV_{better}\) mainly focuses on the exploitation which dedicates to increase the speed of the convergence and \(PV_{worse}\) pays more attention to the exploration which aims at preventing the premature convergence. In the experiment, we use Ontology Alignment Evaluation Initiative (OAEI) test cases and two pairs of real sensor ontologies to test the performance of our approach. The experimental results show that CCEA-based ontology matching approach is both effective and efficient when matching ontologies with various scales and under different heterogeneous situations, and compared with the state-of-the-art sensor ontology matching systems, CCEA-based ontology matching approach can significantly improve the ontology alignment’s quality.  相似文献   

16.
协同进化蚁群算法及其在多目标优化中的应用   总被引:1,自引:0,他引:1  
针对蚁群算法ACS的控制参数难以确定和早熟停滞等缺陷,提出了进化蚁群系统算法模型EACS.EACS通过引入选择、交叉和变异等操作,实现算法参数的自适应调整.标准测试实例的计算结果表明,EACS算法能够克服上述缺陷,便于工程应用.根据协同进化的思想进一步提出了多目标协同进化蚁群算法CACSM.CACSM中的多个群体协同进化,每个群体对应一个目标,并对其它群体的搜索产生影响.CACSM实现了仅通过算法一次运行便求得若干Pareto最优解,提供了更大的决策空间.最后通过一个多目标组合优化问题--岩石钻孔机路径选择问题的求解,验证说明了CACSM的有效性和适用性.  相似文献   

17.
为进一步提高多粒子群协同进化算法的寻优精度, 并有效改善粒子群易陷入局部极值及收敛速度慢的问题, 结合遗传算法较强的全局搜索能力和极值优化算法的局部搜索能力, 提出了一种改进的多粒子群协同进化算法. 对粒子群优化算法提出改进策略, 并在种群进化过程中, 利用遗传算法增加粒子的多样性及优良性, 经过一定次数的迭代, 利用极值优化算法加快收敛速度. 实验结果表明该算法具有较好的性能, 能够摆脱陷入局部极值点的问题, 并具有较快的收敛速度.  相似文献   

18.
基于协同策略和量子免疫计算理论,提出量子协同免疫动态优化算法,并从理论上证明算法的全局收敛性.该算法采用量子比特编码表达种群中的抗体,并采用量子旋转门和动态调整旋转步长策略来演化抗体,加速原有克隆算子的收敛.该算法中引入协同策略增强子群体间的信息交流,提高种群的多样性,同时利用量子编码种群的关联性,使算法具有更强的稳定性,能够较好地适应于动态问题的求解.文中通过一系列动态背包测试问题和交叉验证(t检验)实验表明,量子协同免疫动态优化算法具有更强的鲁棒性和适应性,显示出较优越的性能.  相似文献   

19.
基于人群搜索算法的PID控制器参数优化   总被引:11,自引:0,他引:11  
关于PID控制器在工业控制领域应用优化问题,PID参数优化成为工业自动化研究的热点.PID参数优化对于系统的稳定性、可靠性和快速响应等特性有着重要的意义.为了改善和优化PID控制器性能,提出一种人群搜索算法(SOA),以PID三个参量为搜寻队伍,以误差绝对值和控制输入平方项的时间积分作为优化目标,经过迭代寻优计算得到系统最优控制量.通过对比遗传算法和粒子群算法PID参数优化,仿真结果表明,改进算法提高了系统的控制精度,系统响应速度快,鲁棒性好,为控制系统PID参数整定提供了参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号