首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li Y  Jiang Y  Yan XP  Peng WJ  Wu YY 《Analytical chemistry》2002,74(5):1075-1080
One of the limitations in previous flow injection (FI) sorption preconcentration procedures in a knotted reactor (KR), which have been carried out exclusively with a single continuous sample injection over a certain period, is the relatively low retention efficiency (typically 40-50%). Although the sensitivity of such systems could be improved by properly increasing sample preconcentration time, sample loading flow rate, or both, further improvement of the sensitivity has been limited by the narrow linearity of the relationship between signal intensity and preconcentration time or sample loading time. In this work, a novel on-line FI multiplexed sorption preconcentration procedure with repetitive sample injections was developed to overcome the above problems in the previous systems. In contrast to previous FI preconcentration systems, the proposed multiplexed preconcentration procedure evenly divides a single longer sample injection step into several shorter substeps while the total preconcentration time is still kept constant. To demonstrate its merits, the proposed FI on-line KR multiplexed sorption preconcentration system was combined with flame atomic absorption spectrometry (FAAS) for determination of trace lead in water, tea, and herb medicines. The lead in the sample solution on-line reacted with ammonium pyrrolidine dithiocarbamate, and the resultant analyte complex was sorbed on the inner walls of the KR. The residual sample solution was then removed from the KR with an air flow. The above two steps were repeated eight times with a total preconcentration time of 120 s. The sorbed analyte was eluted from the KR with 4.5 mol L(-1) HCl for on-line FAAS detection. The present multiplexed preconcentration procedure with eight repetitive sample injections for a total preconcentration time of 120 s gave a retention efficiency of 92%, twice that obtained by one single sample injection preconcentration (47%). In addition, the linear ranges of the diagrams of absorbance against sample loading flow rate and sample loading time were extended, offering more potential for achieving high sensitivity by increasing sample loading rates or sample loading time compared to the previous one single continuous sample injection preconcentration procedure. At a sample loading flow rate of 3.6 mL min(-1) for a total preconcentration period of 120 s, an enhancement factor of 57 and a detection limit (3sigma) of 8 microg L(-1) were obtained. The precision was 1.4% (RSD, n = 11) at the 200 microg L(-1) level. The developed method was successfully applied to the determination of trace lead in various water samples, herb medicines, and a certified tea reference material.  相似文献   

2.
Enzyme-immobilized magnetic microparticles (EMMP) have been prepared for use as a microreactor in flow injection analysis (FI). The microparticles were directly injected into the FI system. Their retention occurred within the flow line by small permanent magnets located near the detector. The analytical utility of this concept was illustrated by the assay of glucose using glucose oxidase (GOx), immobilized microparticles, and amperometric detection of liberated hydrogen peroxide. The microparticles were derived from silica gel (nominal pore diameter, 15-80 nm) by impregnation with a citric acid/ethanol solution and a ferric nitrate/ethanol solution and then by calcination in a nitrogen atmosphere to produce ferrimagnetic fine particles of spinel-type iron oxide (gamma-Fe(2)O(3)) inside the pore. They were characterized by X-ray diffraction. The calibration curve of the glucose sample (2 microL injected) was linear between 2.5 x 10(-6) and 5 x 10(-4) mol/L (R = 0.9995), and the detection limit was 1.0 x 10(-6) mol/L or 0.36 ng of injected glucose (S/N = 3). The repeatability for a 5 x 10(-4) mol/L glucose solution was RSD = 1.5% (n = 6). Application to the assay of glucose in a fermentation broth is illustrated. The GOx MMP were stable and active for more than eight months when kept at 10 degrees C.  相似文献   

3.
Male KB  Saby C  Luong JH 《Analytical chemistry》1998,70(19):4134-4139
A flow injection (FI) electrochemical detection system has been developed and optimized for the determination of pentachlorophenol (PCP) in contaminated soil. PCP was oxidized to tetrachloro-1,4-benzoquinone (1,4-TCBQ) with a high yield using bis(trifluoroacetoxy)iodobenzene in 0.1 M tartaric acid, pH 2.0, at ambient temperature. Upon rapid reaction with immobilized glucose oxidase, the detection and amplification scheme was completed as the reduced form of 1,4-TCBQ or tetrachloro-1,4-hydroquinone was reoxidized to 1,4-TCBQ at the surface of the glassy carbon electrode (+ 0.40 V vs Ag/AgCl). Rapid electron exchange between the enzyme and its glucose substrate provided a non-rate-limiting current toward the electrode. The FI electrochemical system was linear up to 1 μM oxidized PCP with a detection limit of 10 nM and exhibited a reproducibility of ±0.6% over 165 repeated analyses during 14 h of continuous operation. When applied to PCP-contaminated soil samples, the results obtained from the FI electrochemical system compared well with those of the HPLC standard method.  相似文献   

4.
We describe a robust, highly sensitive instrument for the determination of ambient ammonia. The instrument uses two syringe pumps to handle three liquids. The flow configuration is a hybrid between traditional flow injection (FI) and sequential injection (SI) schemes. This hybrid flow analyzer spends approximately 87% of its time in the continuous flow FI mode, providing the traditional FI advantages of high baseline stability and sensitivity. The SI fluid handling operation in the remaining time makes for flexibility and robustness. Atmospheric ammonia is collected in deionized water by a porous membrane diffusion scrubber at 0.2 L/min with quantitative collection efficiency, derivatized on-line to 1-sulfonatoisoindole, and measured by fluorometry. In the typical range for ambient ammonia (0-20 ppbv), response is linear (r2 = 0.9990) with a S/N = 3 limit of detection of 135 pptv (15 nM for 500 microL of injected NH4+(aq)) with an inexpensive light emitting diode photodiode-based detector. Automated operation in continuously repeated, 8-min cycles over 9 days shows excellent overall precision (n = 1544 p(NH)3 = 5 ppbv, RSD = 3%). Precision for liquid-phase injections is even better (n = 1520, [NH4+(aq)] = 2.5 microM, RSD = 2%). The response decreases by 3.6% from 20 to 80% relative humidity.  相似文献   

5.
Wang SL  Huang XJ  Fang ZL 《Analytical chemistry》2001,73(18):4545-4549
A novel miniaturized capillary electrophoresis (CE) system is described where a Teflon AF-coated silica capillary serves both as the separation channel and as a transversely illuminated liquid core waveguide. This device uniquely uses flow injection (FI)-based split-flow sample introduction through a falling-drop interface. An H-channel structure fixed on a microscope glass slide utilizes a horizontal separation capillary with tubular sidearms on each end that serve as inlet and outlet flow-through electrode reservoirs. The inlet reservoir also functions as a falling-drop interface for coupling to the FI system. A blue LED is used as excitation source. A large-core optical fiber takes the emitted fluorescence to an inexpensive PMT with two layers of green plastic used for optical filtering. No focusing arrangement is needed. Continuous FI introduction of a series of 30-microL samples containing a mixture of of fluorescein isothiocyanate (FITC)-labeled amino acids allowed a throughput rate up to 144 samples/ h, with approximately 2% carryover and good precision (3.2% RSD). Baseline separation was achieved for FITC-labeled arginine, phenylalanine, glycine, and FITC in sodium tetraborate buffer (pH 9.5) with plate heights of 5.4-5.5 microm and plate numbers of 2.34 x 10(4)-2.37 x 10(4) under electrical field strengths of 214 V/cm for injection and 500 V/cm for separation (14-cm capillary, 48-microm i.d.). Detection limits (S/N = 3) were 1.3 microM for arginine and 1.9 microM for phenylalanine and glycine.  相似文献   

6.
An automated flow injection (FI) manifold is described to perform the addition of isotopic spikes to aqueous samples on-line with ICP-MS for isotope dilution (ID) analysis. The manifold uses the sandwich technique (with the nested loop approach) to perform an injection of the isotopic spike solution within a sample (or standard) plug, the resulting sample-spike-sample sequence being pushed toward the nebulizer by a 1% HNO(3) carrier. A standard, which must contain one element not present in the spike solution to allow the determination of the dispersion coefficient, must also be used to allow a reverse isotope dilution analysis, as well as corrections for mass discrimination and/or spectroscopic interferences. Indeed, because the signals from the individual isotopes are monitored continuously, only one isotope free of spectroscopic interference is required for elements whose isotopic distribution does not vary in nature (two isotopes are still needed for the other elements), as a correction for the interference can be made by comparison with the signals from the standard. Furthermore, this automated approach makes ID-ICP-MS a faster method and does not require any preliminary analysis of the sample because the concentration profile resulting from FI allows the selection of the best isotopic ratio. It was successfully applied to the determination of Mo in saline water.  相似文献   

7.
We describe a simple miniature injection device that can be used for introduction of nanoliter sample volumes in microfluidic systems. The hybrid microstructure consists of two hydraulically connected parts, a pulse micropump, and a multilevel cross-flow injector. Sample injection is accomplished by creating a transient pressure pulse in the sample line by means of the solenoid-based micropump. The sample line is aligned at right angles to the main carrier flow line. The two flow channels are located in two different parallel planes. The cross section of the two channels is defined by a self-sealing aperture in an elastomer. During the pressure pulse, the sample is introduced through this aperture directly into the main flow stream. Fast impulse-based injection causes rapid mixing of the injected sample with the main flow stream. This permits simple single-line manifold micro flow injection (MFI) systems. The deformation/relaxation of the elastomer is fast and repeatable; as such, rapid serial actuations essentially result in a larger injected sample volume without significantly affecting the peak shape. In the present form, 2-40-nL samples are easily injected by single injection, and the injected volume can be chosen by system parameters. The injection repeatability as observed by a photometric detector is better than 1.2% (n = 100).  相似文献   

8.
Du WB  Fang Q  He QH  Fang ZL 《Analytical chemistry》2005,77(5):1330-1337
In this work, a simple, robust, and automated microfluidic chip-based FIA system with gravity-driven flows and liquid-core waveguide (LCW) spectrometric detection was developed. The high-throughput sample introduction system was composed of a capillary sampling probe and an array of horizontally positioned microsample vials with a slot fabricated on the bottom of each vial. FI sample loading and injection were performed by linearly moving the array of vials filled alternately with 50-microL samples and carrier, allowing the probe inlet to enter the solutions in the vials through the slots sequentially and the sample and carrier solution to be introduced into the chip driven by gravity. The performance of the system was demonstrated using the complexation of o-phenanthroline with Fe(II) as a model reaction. A 20-mm-long Teflon AF 2400 capillary (50-microm i.d., 375-microm o.d.) was connected to the chip to function as a LCW detection flow cell with a cell volume of 40 nL and effective path length of 1.7 cm. Linear absorbance response was obtained in the range of 1.0-100 microM Fe(II) (r2=0.9967), and a good reproducibility of 0.6% RSD (n=18) was achieved. The sensitivity was comparable with that obtained using conventional FIA systems, which typically consume 10,000-fold more sample. The highest sampling throughput of 1000 h-1 was obtained by using injection times of 0.08 and 3.4 s for sample and carrier solution, respectively, with a sample consumption of only 0.6 nL for each cycle.  相似文献   

9.
An electrospray ion chromatography-tandem mass spectrometry (IC-MS/MS) method has been developed for the analysis of bromate ions in water. This IC-MS/MS method improves the limit of detection of bromate ions by a factor of 10. The method consists of solid phase extraction with an ion exchange column and elution of the analyte with water/methanol ammonium sulfate eluent on-line with a negative ion electrospray mass spectrometry detection. SPE requires sample pretreatment to remove any major ions that displace bromate, consisting of eliminating SO(4)(2)(-), Cl(-), and HCO(3)(-) ions respectively with barium-form, silver-form, and acid (H(+)-form) exchange resins. The methanolic sulfate eluent permits IC-MS coupling via an electrospray interface. BrO(3)(-) was selected in the first quadrupole (Q1) at two m/z values, 127 and 129, according to the isotope contributions of (79)Br and (81)Br. After fragmentation in the collision cell (second quadrupole, Q2), the third quadrupole (Q3) analyzes the product ions as (M - O)(-), (M - 2O)(-), and (M - 3O)(-). Among the six recordable transitions, four were selected, the other two yielding high background. A lowered resolution raised sensitivity by a factor of up to 3. The limit of quantitation of this method was 0.1 μg/L.  相似文献   

10.
Ke CB  Lin KC 《Analytical chemistry》1999,71(8):1561-1567
The flame laser-enhanced ionization (LEI) technique is coupled with the flow injection analysis system to measure the trace lead amounts in aqueous solution and in seawater. The flow injection (FI) manifold is incorporated with a microcolumn packed with a C18 bonded silica. The chelating agent DDPA is used to form the Pb-DDPA complex, which may be sorbed in the microcolumn and then eluted with methanol. The preconcentrated Pb is then detected by the LEI technique with either single-step or two-step excitation. At 5- and 15-mL volume-fixed sample loading, the detection limits of 0.011 and 0.0033 ng/mL (11 and 3.3 ppt) and enrichment factors of 16 and 48 are achieved, respectively, using a two-step FI-LEI. The sensitivity of the current system proves to be better by at least 1 order of magnitude than that of conventional LEI method. The FI-LEI also increases the tolerance of matrix interference. The LEI signal is slightly reduced to 80% intensity as 10,000 micrograms/mL (ppm) Na and K matrixes are mixed in the lead solution. The resistance to the alkali matrixes is enhanced approximately 4 times that reported previously using a similar water-immersed probe as a LEI collector. Finally, the FI-LEI is for the first time applied to detect the Pb content in seawater, achieving a result of 0.0112 +/- 0.0006 ng/mL (ppb) consistent with the certified value of 0.013 +/- 0.005 ng/mL (ppb).  相似文献   

11.
Feng YL  Zhu J 《Analytical chemistry》2006,78(18):6608-6613
A new on-line capillary zone electrophoresis/mass spectrometry (CZE/MS), constant pressure-assisted electrokinetic injection (PAEKI), for the analysis of negatively charged nucleotides is reported. PAEKI uses an applied pressure to counterbalance the reverse electroosmotic flow in the capillary column during sample injection, while taking advantage of the field amplification in the sample medium. At balance, the running buffer in the column is stationary, permitting potentially unlimited injection time, and hence unlimited sample enrichment power. The ability of PAEKI to maintain a narrow sample zone over a long injection time seems to be a result of the formation of a high ion concentration band at the boundary of the two media due to rapid deceleration of the migrating ions at the boundary. The injected amount of analytes proved to be linearly proportional to both the field amplification factor, which is expressed as the ratio of resistivities of sample medium to running buffer, and the injection time, which extended up to 1200 s in CZE/MS and 3600 s in CZE/UV. For a 300-s on-line PAEKI injection in CZE/MS, 3 orders of magnitude sample enhancement (5000-fold enrichment) could be observed for the four single nucleotides without compromising separation efficiency and peak shape, and an achievement of detection limits between 0.04 and 0.07 ng/mL. With appropriate sample cleanup, PAEKI can be used in the analysis of single nucleotides in enzyme-digested DNA.  相似文献   

12.
A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool, or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3molL(-1) HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15mL of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75microgL(-1) for lead and cadmium, respectively. For a solution containing 100 and 10microgL(-1) of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n=7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%.  相似文献   

13.
Liu J  Yan J  Yang X  Wang E 《Analytical chemistry》2003,75(14):3637-3642
The design and performance of a miniaturized chip-type tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)3(2+)] electrochemiluminescence (ECL) detection cell suitable for both capillary electrophoresis (CE) and flow injection (FI) analysis are described. The cell was fabricated from two pieces of glass (20 x 15 x 1.7 mm), and the 0.5-mm-diameter platinum disk was used as working electrode held at +1.15 V (vs silver wire quasi-reference), the stainless steel guide tubing as counter electrode, and the silver wire as quasi-reference electrode. The performance traits of the cell in both CE and FI modes were evaluated using tripropylamine, proline, and oxalate and compared favorably to those reported for CE and FI detection cells. The advantages of versatility, sensitivity, and accuracy make the device attractive for the routine analysis of amine-containing species or oxalate by CE and FI with Ru(bpy)3(2+) ECL detection.  相似文献   

14.
In this paper we describe the first use of laser desorption in conjunction with membrane introduction mass spectrometry (MIMS). In this technique, a low-powered carbon dioxide laser is used to irradiate the low-pressure (vacuum) side of a silicone membrane during a typical MIMS analysis of an aqueous solution. The absorption of laser energy results in direct membrane heating and rapid desorption of permeate molecules. This improves both the sensitivity and response times of MIMS when analyzing compounds having high molecular weight and low volatility. Two simple interfaces are described for performing laser desorption inside and outside the vacuum manifold of a GCQ ion trap mass spectrometer. Together with flow injection (FI) sample introduction, we demonstrate direct on-line monitoring of aqueous solutions of high boiling point (200-530 °C) polynuclear aromatic hydrocarbons such as naphthalene, anthracene, pyrene, benzo[b]fluoranthene, and indeno[123-cd]pyrene.  相似文献   

15.
Linear dichroism is defined as the differential absorbance of linearly polarized light oriented in two orthogonal directions by an aligned sample. The measurement of a linear dichroism (LD) spectrum of a sample provides two key pieces of structural information. First, that the sample and the chromophores within the sample are able to align. Second, given knowledge of the transition polarization directions of the chromophores, the orientation of the chromophores within the aligned sample can be resolved. It has been shown that LD can provide unique information on the structure of some of the more challenging biomolecular complexes. This has included macromolecular protein and peptide fibers such as actin, tubulin, and amyloids as well as protein-membrane complexes and DNA-protein complexes. Much of this work has been enabled by the development of a low volume Couette flow cell that efficiently aligns long molecules in solution. However, the current Couette system is inherently complex to assemble for each experiment and hence not suited to measurement of rapid reactions. In this paper we detail the development of the first rapid injection LD cell. The system utilizes a conventional stopped-flow injection system coupled to a modified low volume Couette cell, where a narrow bore capillary replaces the normal solid central rod. The system is shown to have similar optical characteristics to the conventional LD Couette flow cell but with the added benefit of a much shorter dead time (0.60 s compared to ~60). The rapid injection Couette cell has been used to measure the degradation of DNA by DNA exonuclease I, providing data that would not be available using a conventional system.  相似文献   

16.
A single-channel chip-based analytical microsystem that allows rapid flow injection measurements of the total content of organic explosive or nerve agent compounds, as well as detailed micellar chromatographic identification of the individual ones, is described. The protocol involves repetitive rapid flow injection (screening) assays--to provide a timely warning and alarm--and switching to the separation (fingerprint identification) mode only when harmful compounds are detected. While micellar electrokinetic chromatography, in the presence of sodium dodecyl sulfate (SDS), is used for separating the neutral nitroaromatic explosive and nerve agent compounds, an operation without SDS leads to high-speed measurements of the "total" explosives or nerve agent content. Switching between the "flow injection" and "separation" modes is accomplished by rapidly exchanging the SDS-free and SDS-containing buffers in the separation channel. Amperometric detection was used for monitoring the separation. Key factors influencing the sample throughput, resolution, and sensitivity have been assessed and optimized. Assays rates of about 360 and 30/h can thus be realized for the "total" screening and "individual" measurements, respectively. Ultimately, such development will lead to the creation of a field-deployable microanalyzer and will enable transporting the forensic laboratory to the sample source.  相似文献   

17.
Sodium borohydride-based hydride generation was automated by using programmable flow within the lab-on-valve module. Mercury vapor, generated in the reaction mixture, was extracted in a gas/liquid separator. The gas-expansion separator was miniaturized and compared with the performance of a novel gas separator that exploits the combination of Venturi effect and reduced pressure. Cold vapor atomic spectroscopy was used as a model system, with detection of mercury by absorption at 254 nm and limit of detection of 9 microg of Hg/L, using 300 microL of sample and 100 microL of borohydride. This work introduces, for the first time, sequential injection technique for hydride generation, highlights advantages of using programmable flow, and outlines means for miniaturization of assays based on spectroscopy of volatile species.  相似文献   

18.
A rapid method for determination of metal speciation based on an automated two-column ion exchange system is described. Two fractions of dissolved trace metal species are directly determined by on-line flame atomic absorption spectrophotometry after preconcentration by sequential columns of Chelex-100 chelating resin and AG MP-1 macroporous anion resin. A third fraction is determined by standard addition. Variables that affect the results obtained by the two-column system are studied by the use of model complexing agents. With a 10-mL sample loop, the sample throughput is 6 samples per hour and detection limits are 0.1 micrograms/L for Cu(II), 0.08 micrograms/L for Cd(II), and 0.2 micrograms/L for Zn(II). The method is used to determine the speciation of Cu(II), Cd(II), and Zn(II) in natural water samples.  相似文献   

19.
Kang D  Moon MH 《Analytical chemistry》2004,76(13):3851-3855
A miniaturized frit inlet asymmetrical flow field-flow fractionation (mFI-AFlFFF) channel has been constructed and tested for the separation of proteins. By scaling down the geometrical channel dimension of a conventional FI-AFlFFF system, flow rate ranges that can be manipulated were decreased to 20-30 microL/min, which reduces the injection amount of sample materials. The end effect contribution to plate height was evaluated by varying the inner diameter of the connection tubing between the injector and the channel inlet at various injection flow rates, and the results showed that the use of silica capillary tubing of the shortest possible distance is essential in reducing the initial band broadening prior to the sample injection to the microscale channel. The capability of the microFI-AFlFFF system was demonstrated with the separation of protein standards, polystyrenesulfonates, and ssDNA strains and for the characterization of replication protein A-ssDNA binding complex regulated by redox status.  相似文献   

20.
Bromate removal from water by granular ferric hydroxide (GFH)   总被引:1,自引:0,他引:1  
The feasibility of granular ferric hydroxide (GFH) for bromate removal from water has been studied. Batch experiments were performed to study the influence of various experimental parameters such as effect of contact time, initial bromate concentration, temperature, pH and effect of competing anions on bromate removal by GFH. The adsorption kinetics indicates that uptake rate of bromate was rapid at the beginning and 75% adsorption was completed in 5 min and equilibrium was achieved within 20 min. The sorption process was well described by pseudo-second-order kinetics. The maximum adsorption potential of GFH for bromate removal was 16.5 mg g−1 at 25 °C. The adsorption data fitted well to the Langmuir model. The increase in OH peak and absence of Br–O bonding in FTIR spectra indicate that ion-exchange was the main mechanism during bromate sorption on GFH. The effects of competing anions and solution pHs (3–9) were negligible. Results of the present study suggest that GFH can be effectively utilized for bromate removal from drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号