共查询到17条相似文献,搜索用时 78 毫秒
1.
针对变压器故障征兆和故障类型的非线性特性,结合油中气体分析法,设计了一种改进粒子群算法的小波神经网络故障诊断模型。模型采用3层小波神经网络,并用一种改进粒子群算法对其进行训练。该算法在标准粒子群算法的基础上,通过引入遗传算法中的变异算子、惯性权重因子和高斯加权的全局极值,加快了小波神经网络训练速度,提高了其训练的精度。仿真实验证明这种改进粒子群算法的小波神经网络可以有效地运用到变压器故障诊断中,为变压器故障诊断提供了一条新途径。 相似文献
2.
3.
基于粒子群优化神经网络的变压器故障诊断 总被引:6,自引:2,他引:6
为克服电气分析应用中误差反向传播(BP)神经网络存在的不足,提出了一种利用改进粒子群算法优化神经网络的变压器故障诊断新方法。该法的惯性权重自适应调整,以平衡局部和全局搜索能力;收缩因子加快算法的收敛速度,有利于更快地收敛于全局最优解。利用改进的粒子群算法优化神经网络参数,并结合BP算法训练网络可有效地克服常规BP算法训练网络权值和阈值收敛速度慢、易陷入局部极小和遗传算法独立训练神经网络速度缓慢等缺点。最后,进行变压器故障实例分析的仿真结果表明,该算法具有较快的收敛速度和较高的诊断准确度,证实了该方法的正确性和有效性。 相似文献
4.
5.
6.
针对标准误差反向传播(back propagation,BP)神经网络算法易陷入局部最优、收敛速度缓慢等问题,提出一种基于改进粒子群算法的模糊神经的变压器油色谱故障诊断方法。该方法首先通过模糊编码边界对网络输入模糊化;再结合非线性策略的惯性权重及学习因子改进的粒子群BP网络算法来诊断变压器故障类型,既能平衡全局搜索和局部搜索能力,还可以避免BP神经网络陷入局部最优;最后,采用MATLAB软件对变压器油色谱数据进行仿真,结果表明该方法具有收敛速度快、诊断准确率高、泛化能力强等优点。 相似文献
7.
针对电力变压器故障诊断问题,提出了一种基于混沌(Chaos)优化的粒子群(Particle Swarm Optimization)BP神经网络算法。该算法将混沌、粒子群和BP神经网络相结合,通过混沌粒子群算法寻优,得到BP神经网络的最优权值和阈值初始值,然后进行网络训练和测试。利用了混沌算法的遍历性和对初始值敏感的特点,对粒子群算法进行了参数优化,引入了早熟判断机制,并在早熟状态时进行了混沌扰动,使算法后期不易陷入局部最优。通过实例训练与测试表明,CPSO-BP神经网络算法在变压器故障诊断方面有较好的效果。 相似文献
8.
9.
粒子群-神经网络混合算法在三相整流电路故障诊断中的应用 总被引:1,自引:0,他引:1
采用一种基于粒子群优化算法和人工神经网络相结合的混合算法应用于电力电子整流电路的故障诊断.文中首先论述了粒子群优化算法以及实现粒子群和神经网络的混合算法的操作步骤,然后将这种诊断方法应用于电力电子整流电路的故障诊断.仿真诊断结果表明,这种混合诊断方法可用于电力电子三相整流电路的故障诊断.它具有较快的收敛速度和较高的诊断精度,它具有工程的应用价值. 相似文献
10.
11.
12.
为了更加准确快速地诊断出三相异步电动机运行过程中发生的各类故障,在采用小波包分析提取异步电机故障特征向量的基础上,提出了一种混沌动态权重粒子群算法(CDW-PSO)优化BP神经网络的故障诊断方法,构建电机的神经网络故障诊断模型,采用混沌动态权重粒子群算法优化神经网络的结构参数。实验分析表明,采用该方法用于电机故障诊断,诊断速度快、准确性高、可靠性好。 相似文献
13.
为精确诊断电力变压器内部潜在绝缘故障类型,通过对变压器内部油过热和油纸绝缘中局部放电等8种潜在绝缘故障发生时所产生的气体成分分析,提出了一种以人工免疫网络与粒子群算法改进径向基函数RBF(radial basis function)神经网络的变压器故障诊断算法。重点介绍了基于RBF神经网络的变压器故障诊断模型的构成原理、基于人工免疫网络算法的故障模型隐层中心确定方法以及基于粒子群算法的网络模型权重寻优方法,并进行了仿真实验。实验结果表明:该算法能有效地识别其绝缘故障类型,且识别精度可达90%以上。 相似文献
14.
15.
基于粒子群模糊神经网络的短期电力负荷预测 总被引:3,自引:0,他引:3
为了从根本上提高短期电力负荷预测中神经网络的速度和预测精度,提出了将粒子群算法和BP算法相结合的短期负荷预测方法。用粒子群算法来训练网络参数,直到误差趋于一稳定值,然后用优化的权值进行BP算法,实现短期负荷预测。在构建网络模型时,考虑了气候、温度等因素的影响,并把它们进行模糊化处理后作为网络的输入。仿真结果表明基于这一方法的负荷预测系统具有较高的精度和实时性。 相似文献
16.
针对短期负荷预测的特点,提出基于粒子群(PSO)优化的模糊神经网络短期负荷预测模型。将PSO与模糊优选人工神经网络进行融合,在对模糊优选神经网络训练中采取PSO算法和梯度下降算法相结合的方法,充分发挥PSO全局寻优的能力和梯度下降局部细致搜索优势。对广西某地区进行短期负荷预测,并与实际值进行比较分析,结果表明这一模型应用于短期负荷预测能获得较高的预测精度,是一种行之有效的短期负荷预测方法。 相似文献
17.
基于改进粒子群算法的中压配电网无功优化 总被引:1,自引:0,他引:1
建立了以年费用最小为目标函数的无功优化数学模型,提出一种融合裂变和变异操作的分合群粒子群算法求解该模型,并结合对系统分区、合理设置补偿上限等方法减小搜索范围,实现了同时求解补偿点和补偿量。算法在标准粒子群优化(particle swarm optimization,PSO)算法的基础上通过分群和裂变,保持粒子的多样性,避免收敛早熟;通过合群和变异,加强算法的搜索精度,提高算法的收敛稳定性。用IEEE 33节点系统进行仿真计算,与标准PSO算法对比表明,改进PSO算法在计算精度、收敛稳定性等方面具有明显优势;与无功二次精确矩法对比表明,改进PSO算法具有自动调整补偿点个数的能力,补偿方案经济性更好,能有效解决中压配电网的无功优化问题。 相似文献