首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对日常户外高密度遮挡人群,本文提出一种基于行人头部检测的高效、鲁棒的多人跟踪方法。由于高密度人群的遮挡问题严重,因此提取背景的方法不可行。通过基于Haar-like特征的Viola-Jones分类器对视频中行人的头部正面进行检测,同时通过基于头部轮廓特征的Logistic回归对视频中行人的头部背面进行检测。确定行人的头部位置后,提取基于颜色直方图的头部特征,最后使用粒子滤波跟踪行人的头部。实验表明本方法能够高效地跟踪高密度遮挡的人群。  相似文献   

2.
针对视频中的行人检测和跟踪问题,提出一种基于可变形部件模型的快速行人检测、改进粒子滤波的行人跟踪算法。在行人检测阶段,为了改善非刚体行人的检测精度,采用了混合多尺度可变形部件模型;同时为了加速行人底层特征的计算,采用了基于预测算法的快速特征金字塔计算行人特征,代替传统的计算图像特征金字塔的每一个尺度特征。在行人跟踪阶段,采用时变的状态空间模型和基于颜色梯度直方图的观测模型对检测到的行人进行跟踪。实验证明,改进的行人检测算法可以在性能损失忽略不计的条件下,大大提高检测速度,并且相对于传统的行人跟踪,改进的粒子滤波算法对行人这一非刚性目标能实现较好的跟踪。  相似文献   

3.
为使舞蹈机器人根据行人的运动轨迹进行路径的动态规划,增强与人共处的能力,提出一种基于激光雷达的室内行人跟踪方法。获取激光原始数据并进行预处理,根据激光数据的分布特点对DBSCAN算法进行优化,实现激光数据的快速聚类,完成环境分割,给出基于类簇到激光雷达的距离及行人身体宽度的行人识别方法,并将行人簇的位置作为初始跟踪位置,将激光数据图形化显示,激光数据转换成视频数据,利用粒子滤波算法实现行人跟踪并实时绘制轨迹。实验结果表明,该方法能获得较好的行人识别以及跟踪效果,且实时性较强。  相似文献   

4.
针对监控场景中行人遮挡导致的检测漏检和精度下降问题,以及跟踪算法中精度与计算复杂度难以平衡的挑战,在YOLOv8基础上引入掩码注意力网络,提出M-YOLOv8行人检测算法。同时,通过将M-YOLOv8与优化后的DeepSort算法相结合,并对行人重识别模型进行轻量化处理,构建了一个完整的行人检测与跟踪方案。实验结果表明,改进后的算法在保持较高检测精度的同时,具有较低的计算成本,可有效应用于监控视频中的行人检测与跟踪任务。  相似文献   

5.
针对传统粒子滤波算法颜色特征单一、行人非刚性不稳定等问题,融合简化的HOG特征和加权的颜色直方图,建立了改进的粒子滤波行人跟踪算法,采用图像分块相似度检测,抑制跟踪过程中行人结构、背景结构及遮挡的干扰。实验表明,该算法在背景颜色相似及遮挡情况下,仍能稳定可靠地跟踪行人,具有较高的准确性与鲁棒性。  相似文献   

6.
目的 行人检测在自动驾驶、视频监控领域中有着广泛应用,是一个热门的研究话题。针对当前基于深度学习的行人检测算法在分辨率较低、行人尺度较小的情况下存在误检和漏检问题,提出一种融合多层特征的多尺度的行人检测算法。方法 首先,针对行人检测问题,删除了深度残差网络的一部分,仅采用深度残差网络的3个区域提取特征图,然后采用最邻近上采样法将最后一层提取的特征图放大两倍后再用相加法,将高层语义信息丰富的特征和低层细节信息丰富的特征进行融合;最后将融合后的3层特征分别输入区域候选网络中,经过softmax分类,得到带有行人的候选框,从而实现行人检测的目的。结果 实验结果表明,在Caltech行人检测数据集上,在每幅图像虚警率(FPPI)为10%的条件下,本文算法丢失率仅为57.88%,比最好的模型之一——多尺度卷积神经网络模型(MS-CNN)丢失率(60.95%)降低3.07%。结论 深层的特征具有高语义信息且感受野较大的特点,而浅层的特征具有位置信息且感受野较小的特点,融合两者特征可以达到增强深层特征的效果,让深层的特征具有较为丰富的目标位置信息。融合后的多层特征图具有不同程度的细节和语义信息,对检测不同尺度的行人有较好的效果。所以利用融合后的特征进行行人检测,能够提高行人检测性能。  相似文献   

7.
对于一些较为流行的应用,例如视频场景监控,对行人的长期有效跟踪是应用的基础.尽管对目标检测与跟踪的相关技术研究已经有了很长的历史,但是如何实时并较为准确地实现目标行人跟踪目前仍然是一个活跃的研究领域.基于多粒度的思想,提出了一种改进的行人跟踪算法,将卷积特征与底层颜色特征结合,对基于深度学习的跟踪算法GOTURN(generic object tracking using regression networks)得到的跟踪结果进行判断决策,结合目标检测对跟踪结果进行修正.实验结果表明:与单一的跟踪算法相比,多粒度决策的跟踪算法能够更加准确地对目标行人进行跟踪,可以显著提高跟踪精度.  相似文献   

8.
提出了分布式多传感器协作的条件粒子滤波算法以解决人与机器人位置的联合概率分布估计问题.全局视觉系统中,各视角独立运行图像平面上基于粒子滤波的目标跟踪,并利用地平面单应关系实现多视角目标主轴同步融合.视觉观测进一步与机器人激光数据以顺序滤波方式异步融合,提出包含人体位置假设的激光似然场模型以提高对机器人位姿误差的鲁棒性,并引入基于Kullback-Leibler距离的自适应采样以降低描述联合分布所需的粒子数目.实验验证了该方法能够在具有观测噪声且人—机位置均不确定的情况下利用多传感器协作实现基于地图的同时机器人定位与人体跟踪.  相似文献   

9.
针对城市中智能视频监控问题,提出一种基于选定区域RGB直方图的粒子滤波行人跟踪算法.首先实现了Eiji Ota在2011年实现的算法,该算法只能对红色目标进行跟踪,然后对该算法进行改进,改进后能够根据选定区域RGB颜色直方图的粒子滤波算法对行人进行跟踪.自动提取跟踪视频的第一帧,然后在第一帧上选择要跟踪的区域,再计算选...  相似文献   

10.
行人跟踪技术是一种现代摄像预警技术,其能够起到对行人位置和动作的判定,并及时通过报警系统给予使用者相应的提示,能够有效避免过多的交通事故的发生。本文即是针对基于HOG和颜色特征的粒子滤波行人跟踪算法进行研究,对算法理论和算法描述进行分析,并对算法当中的HOG特征、颜色特征以及融合二者的粒子滤波算法进行了分析,同时针对于行人遮挡的检测情况进行了探讨,以期能为相关工作提供参考。  相似文献   

11.
一种多特征融合的粒子滤波跟踪新算法   总被引:1,自引:1,他引:1  
仅利用单一的目标特征进行跟踪是大多数跟踪算法鲁棒性不高的重要原因。提出了一种有效的多特征融合跟踪方法,该方法同时结合了颜色和运动边缘特征,并通过粒子滤波方法合理地进行概率融合。实验结果表明,算法能够在一种特征受到背景干扰导致目标鉴别能力丧失时,其它特征仍能稳定可靠地跟踪目标,算法简单,鲁棒性高,能够有效适用于复杂背景下的目标跟踪。  相似文献   

12.
An adaptive particle filter for soft fault compensation of mobile robots   总被引:1,自引:0,他引:1  
Soft fault compensation plays an important role in mobile robot locating, mapping, and navigating. It is difficult to achieve fast and accurate compensation for mobile robots because they are usually highly non-linear, non-Gaussian systems with limited computation and memory resources. An adaptive particle filter is presented to compensate two kinds of soft faults for mobile robots, i.e., noise or factor faults of dead reckoning sensors and slippage of wheels. Firstly, the kinematics models and the fault models are discussed, and five kinds of residual features are extracted to detect soft faults. Secondly, an adaptive particle filter is designed for fault compensation, and two kinds of adaptive scheme are discussed: 1) the noise variances of linear speed and yaw rate are adjusted according to residual features; 2) the particle number is adapted according to Kullback-Leibler divergence (KLD) of two approximate distribution denoted with two particle sets with different particles, i.e., increasing particle number if the KLD is large and decreasing particle number if the KLD is small. The theoretic proof is given and experimental results show the efficiency and accuracy of the presented approach.  相似文献   

13.
基于当前统计模型的改进粒子滤波算法   总被引:4,自引:0,他引:4  
基于“当前”统计模型,提出了双站无源被动跟踪的改进粒子滤波算法.该算法使用扩展卡尔曼滤波提议分布的粒子滤波,融合双站测量数据,包含了残差重抽样步骤以及马尔可夫链蒙特卡罗法等技巧.在双站测量的被动跟踪试验中,比较了各种滤波方式.仿真结果证实,该改进算法能有效跟踪高度机动的目标.  相似文献   

14.
一种鲁棒的多特征融合目标跟踪新算法   总被引:3,自引:0,他引:3       下载免费PDF全文
仅利用单一的目标特征进行跟踪是大多数跟踪算法鲁棒性不高的重要原因。提出了一种新的多特征融合目标跟踪算法,该算法将目标的颜色、纹理、边缘、运动特征统一使用直方图模型进行描述,以降低算法受目标形变和部分遮挡的影响,在Auxiliary粒子滤波框架内将所有特征观测进行概率融合,以突出状态后验分布中目标真实状态对应的峰值,从而有效避免了复杂背景的干扰,并给出了一种有效的融合系数计算方法,使融合结果更加准确可靠。实验结果表明,该算法能同时处理刚性与非刚性目标的跟踪,较单一特征的跟踪算法具有明显的优势,对复杂背景下的跟踪具有较高的鲁棒性。与现有多特征融合算法的比较也证明了本文算法的有效性。  相似文献   

15.
李科  徐克虎  张波 《计算机工程与应用》2012,48(34):171-174,198
针对军事伪装目标在运动过程中存在与背景分布十分相似或遮挡等强干扰情况下的跟踪问题,提出了一种基于自适应多特征融合的均值漂移算法优化的粒子滤波跟踪算法。利用背景加权后的联合直方图表述目标灰度和梯度方向信息,根据前一帧目标特征的可信度自动调节双方的权重,在粒子滤波算法的框架下,利用改进后的均值漂移算法使粒子向目标状态的最大后验核密度估计方向移动,并设计了特征融合的观测模型,以提高跟踪算法的场景适应能力。实验结果表明,该算法可实现对与背景相似的军事伪装目标的稳定跟踪,对目标的严重遮挡具有很好的鲁棒性。  相似文献   

16.
针对资源受限的无线传感器网络,提出一种基于数据删减及量化新息的目标跟踪方法.利用融合中心接收到的量化新息以及数据删减过程传递的信息对目标状态进行估计.每个传感器节点利用容积卡尔曼滤波执行数据删减过程,融合中心执行一个辅助粒子滤波器.为了节省节点的能量和带宽,将所选择的观测数据的新息符号发送到融合中心,融合中心将数据丢失过程所包含的信息加以利用,提高了目标跟踪精度.仿真结果表明了该方法的有效性.  相似文献   

17.
    
This paper considers the problem of tracking a moving target with a radio transmitter using an aerial robot in an online manner. The aerial robot is equipped with a low-cost directional antenna and Software Defined Radio receiver to obtain the signal emitted by the target. The aerial robot rotates around itself and collects a predefined number of signal recordings from each direction to determine the bearing angle to the target in which the received signal strength is maximized. The measurement uncertainty is assumed to be bounded and represented by two triangular areas divided by a bisector. To localize and track the target, a particle filter-based approach is proposed. In this approach, we integrate the discrete and bounded measurement model with the particle filter in such a way that the particles' weights are updated based on a novel method which considers the measurement wedge and the particle locations with respect to this wedge along with a logistic function. We also incorporate the doubling strategy into the particle filter to determine the next measurement locations and avoid arbitrarily large number of measurements. We choose wildlife monitoring as a use case scenario in which a radio transmitter is put on the animal under consideration to allow wildlife researchers to track it. Since each animal has its own motion behavior, we consider different motion models for the target, which are used in modeling animal movements in wildlife studies. Therefore, the proposed approach is validated using a target moving with varying velocity and acceleration. We verified the tracking performance of the approach through a series of extensive simulations. We compared the proposed approach with the optimal offline strategy in terms of the empirical competitive ratio of the total distance traveled and the tracking distance. We also developed a low-cost hardware platform and software infrastructure for the proposed tracking system. Using this platform, we conducted field experiments for the stationary and moving targets.  相似文献   

18.
提出一个基于深度信息对手指和手部进行实时跟踪,并可用于控制电子设备API的方案。首先使用Kinect获取深度信息,然后生成手部的三维点云,进行过滤转换成像素矩阵;再使用K-curvature算法获取指尖,进而获取手指长宽、手指朝向和手掌朝向等数据。实验结果证明该方案识别追踪效果稳定且高效,不受光照和复杂背景影响。能够同时跟踪双手共十个手指和两个掌心的动作轨迹,可用于控制电子设备API,使用者也能用手指在空气中通过Kinect输入字符。  相似文献   

19.
提出了一种静止背景的情况下人体运动目标的检测与跟踪的新方法.该方法利用背景差分法与粒子滤波器算法相结合.首先,利用背景差分法可检测运算出人体运动区域的大小和形心,在一定的时间间隔t(t<<1s)后,再次利用背景差分法经运算可得到人体运动的速度,然后运用粒子滤波器算法利用背景差分所获得的人体运动区域的大小、形心、速度三个参数建立跟踪模型.实验结果证明,该方法对人体目标跟踪是快速且有效的,并且有很好的鲁棒性.  相似文献   

20.
针对粒子滤波在复杂背景下容易造成跟踪目标丢失的问题,提出一种基于多特征信息融合的粒子滤波算法。该方法同时利用灰度和梯度信息描述目标,有效提高了复杂场景下对目标描述的可靠性;在此基础上,推导出多信息融合的观测似然函数,将两种信息融合在一起,使得融合算法能根据当前跟踪形势自适应调整各信息的加权,实现了信息间的优势互补。实验结果表明,该算法鲁棒性较高,明显提高了跟踪精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号