共查询到18条相似文献,搜索用时 515 毫秒
1.
为避免初始聚类中心选取到孤立点容易导致聚类结果陷入局部最优的不足,提出一种基于密度的K-means(聚类算法)初始聚类中心选择方法。该方法首先计算每个数据对象与其它数据对象间的平均相似度,找出平均相似度高于某固定阈值的对象视作核心对象,再从核心对象中选取彼此间最不相似的作为初始聚类中心。通过自构建的新浪微博抓取工具,分别抓取不同类别的数千条数据,经过分词、预处理及权重计算后,用改进的K-means算法对其进行聚类分析,查准/全率较传统的K-means算法要稳定,聚类的平均时间也得到缩短。实验结果表明,改进后的算法在微博聚类中有更高的准确性和稳定性,有利于从大量的微博数据中发现热点舆情。 相似文献
2.
近年来,微博等社交网络的发展给人们的沟通交流提供了方便。由于每条微博都限定在140字以内,因此产生了大量的短文本信息。从短文本中发现话题日渐成为一项重要的课题。传统的话题模型(如概率潜在语义分析(PLSA)、潜在狄利克雷分配(LDA)等) 在处理短文本方面都面临着严重的数据稀疏问题。另外,当数据集比较集中并且话题文档间的差别较明显时,K-means 聚类算法能够聚类出有区分度的话题。引入BTM话题模型来处理微博数据这样的短文本,以缓解数据稀疏的问题。同时,整合了K-means聚类算法来对BTM模型所发现的话题进行聚类。在新浪微博短文本集上进行的实验证明了此方法发现话题的有效性。 相似文献
3.
李勇 《自动化技术与应用》2021,40(11):45-50
微博热点话题发现是指从大量的微博文本中发现用户讨论的热点话题,话题发现主要通过文本聚类的方法实现,聚类算法的选择和改进通常对结果有着重要的影响.针对微博话题发现任务,论文提出通过改进的SinglePass算法和层次聚类的方法,完成微博的话题发现,并且根据横向和纵向对比分析,验证算法话题发现的有效性. 相似文献
4.
《计算机应用与软件》2016,(3)
在微博热点话题发现中,微博文本短、词量少、时效性高,传统的话题检测方法不再适用。针对这些新的特点,提出一种基于微博文本和元数据的话题发现方法。首先利用微博发布时间、用户信息、微博转发评论等元数据构造描述微博词汇能量的复合权值,进而提取出话题的主题词汇,然后基于上下文关系构造主题词汇簇,最后对微博文本进行二次聚类,从而得到微博中的隐含话题以及相关微博文本。在真实微博数据上的实验表明,该方法能有效发现热门话题,提高话题检测的准确率和查全率。 相似文献
5.
智能手机和微博客户端强化了微博的媒体特性,实时发现微博话题具有现实意义。文章提出了一种基于关键字分类的中文微博热点话题发现方法,通过关键字对微博信息进行筛选和归类,以时间窗内词频和增长速度构造赋权函数提取主题词,词汇的同文本条件概率作为相似度判定依据,基于改进的单遍聚类算法进行主题词聚类。对系统运行结果分析表明,该方法可以实时有效地聚类发现微博热点话题。 相似文献
6.
7.
提出一种基于状态自动机的突发特征检测算法,针对微博数据长度小,语言不规范,噪声大,数据量大的特点,优化预处理过程和状态自动机模型参数;提出一种突发话题聚类算法,对特征词的词频向量表示进行改进,并引入基于词激活力(WAF)的词法特征,使得聚类效果更加准确,得到的突发话题可读性更强.最后通过实验方法验证了算法的可行性. 相似文献
8.
随着微博的大量普及和关注度的不断提高,微博热点话题发现已成为当前研究热点。针对于短文本、向量空间模型(VSM)文本表示方法存在高维度、稀疏,以及同义多义问题,导致难以准确度量文本相似度,提出一种基于隐含语义分析的两阶段聚类话题发现方法。引入话题热度的概念来选取具有一定关注度的微博文本,用隐含语义分析(LSA)对数据集进行建模;用层次聚类的CURE算法确定初始类中心;用K-means聚类得到热点话题的聚类结果。真实微博数据集的实验结果验证了该方法的有效性。 相似文献
10.
《计算机应用与软件》2017,(12)
针对微博的短文本、口语化和大数据等特性,提出基于词向量的微博话题发现方法。爬取实验数据结合中文语料库训练得到词的向量表示,再通过定义的文本词向量模型得到文本的词向量表示,相较于传统的向量空间表示模型,词向量表示模型能够解决微博短文本特征稀疏、高维度问题,同时,能够解决文本语义信息丢失问题;采用改进的Canopy算法对文本进行模糊聚类;对相同Canopy内的数据用K-means算法做精确聚类。实验结果表明,该方法与经典Single-Pass聚类算法相比,话题发现综合指标提高4%,证明了所提方法的有效性和准确性。 相似文献
11.
随着微博的发展,其影响力日益增大,对微博主题内容进行分析具有重要的价值.主题模型技术能够从文本数据中提取主题,但是,由于微博文本短、随意性大、信息量小等特点,微博主题的分析具有一定的难度.提出了一个微博主题可视分析系统,利用多种互相关联的视图与丰富的交互手段,支持用户对主题模型结果进行分析与探索.系统结合了微博数据的特点,引入微博用户与时间因素,支持分析者从多角度对微博主题进行全面分析.系统支持用户在主题可视分析的基础上,通过交互操作对主题进行编辑,从而改进主题模型,提高模型的准确性和可靠性.案例分析结果表明,提出的系统可以有效地帮助用户分析微博主题和修正主题. 相似文献
12.
13.
14.
针对汉越跨语言新闻话题发现任务中汉越平行语料稀缺,训练高质量的双语词嵌入较为困难,而且新闻文本一般较长导致双语词嵌入的方法难以很好地表征文本的问题,提出一种基于跨语言神经主题模型(CL-NTM)的汉越新闻话题发现方法,利用新闻的主题信息对新闻文本进行表征,将双语语义对齐转化为双语主题对齐任务。首先,针对汉语和越南语分别训练基于变分自编码器的神经主题模型,从而得到单语的主题抽象表征;然后,利用小规模的平行语料将双语主题映射到同一语义空间;最后,使用K-means方法对双语主题表征进行聚类,从而发现新闻事件簇的话题。实验结果表明,所提方法相较于面向中英文的隐狄利克雷分配主题改进模型(ICE-LDA)在Macro-F1值与主题一致性上分别提升了4个百分点与7个百分点,可见所提方法可有效提升新闻话题的聚类效果与话题可解释性。 相似文献
15.
热点话题挖掘是舆情监控的重要技术基础。针对现有的论坛热点话题挖掘方法没有解决数据中词汇噪声较多且热度评价方式单一的问题,提出一种基于主题聚簇评价的热点话题挖掘方法。采用潜在狄里克雷分配主题模型对论坛文本数据建模,对映射到主题空间的文档集去除主题噪声后用优化聚类中心选择的K-means++算法进行聚类,最后从主题突发度、主题纯净度和聚簇关注度三个方面对聚簇进行评价。通过实验分析得出主题噪声阈值设置为0.75,聚类中心数设置为50时,可以使聚类质量与聚类速度达到最优。真实数据集上的测试结果表明该方法可以有效地将聚簇按出现热点话题的可能性排序。最后设计了热点话题的展示方法。 相似文献
16.
随着社交网络和互联网的飞速发展,产生了大量的微博短文本流数据。及时发现微博文本流中热点话题,对话题推荐和舆情监测等有重要作用。为了解决微博短文本特征稀疏问题,利用微博评论对微博进行特征扩展,提出了一种基于特征扩展的微博短文本流热点话题检测方法(Feature extension-based hot topic detection, FE-HTD)。首先利用评论用户的影响力以及评论文本的点赞数筛选评论文本,并使用词共现和词频-逆文档频率(Term frequency-inverse document frequency,TF-IDF)方法从选取的评论文本中抽取特征词完成对微博文本的特征扩展;然后计算微博文本流的词对速度、词对加速度,并根据点赞数、评论数计算微博文本强度,结合词对加速度与微博文本强度定义突发特征;最后,根据突发词对的速度确定可变长的热点话题窗口范围,通过聚类得到窗口中热点话题的主题结构。实验中,将所提算法与基于文本的话题检测(Text-based topic detection, T-TD)和基于突发词的话题检测(Burst words-based topic detection, BW-TD)进行对比实验。结果表明,本文算法FE-HTD准确率达76.4%,召回率达78.7%,与对比算法T-TD和BW-TD相比提高了10%。 相似文献
17.
K均值算法是一种常用的基于原型的聚类算法。但该算法要求用户随机选择初始质心,使得K均值算法受初始化影响较大。二分K均值算法虽然改善了这个问题,但仍然要求用户指定聚类个数,影响了聚类效果。用层次聚类对二分法进行改进,解决了二分K均值算法受用户指定的聚类个数的影响的问题。并结合Chameleon算法,合并划分过细簇,优化聚类结果。仿真实验证明改进的聚类算法的抱团性和分离性优于二分K均值聚类算法。 相似文献