首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
极限学习机ELM(Extreme Learning Machine)具有训练过程极为快速的优点,但在实际分类应用中ELM分类器的分类精度和稳定性有时并不能满足要求。针对这一问题,在ELM用于分类时引入一种训练结果信息量评价指标来改进输出权值矩阵的求解方法,并增加隐层输出矩阵竞争机制来提高ELM的稳定性。为了进一步提高ELM的分类正确率,借鉴神经网络集成的理论,提出一种选择性集成ELM分类器。在集成方法中采用改进Bagging法并提出一种基于网络参数向量的相似度评价方法和选择性集成策略。最后通过UCI数据测试表明,同Bagging法和传统的全集成法相比,该方法拥有更为优秀的分类性能。  相似文献   

2.
针对选择性集成逆向传播神经网络(GASEN-BPNN)模型训练学习速度慢,选择性集成极限学习机(GASEN-ELM)模型建模精度稳定性差等问题,提出一种基于遗传算法的选择性集成核极限学习机(GASEN-KELM)建模方法。该方法首先通过对训练样本进行随机采样获取子模型训练样本;然后采用泛化性、稳定性较佳的核极限学习机(KELM)算法建立候选子模型,通过标准遗传算法工具箱,依据设定阈值按进化策略优化选择最佳子模型;最后通过简单平均加权集成的方式获得最终GASEN-KELM模型。采用标准混凝土抗压强度数据验证了所提出方法的有效性,并与GASEN-BPNN和GASEN-ELM选择性集成算法进行比较,表明所提出方法可以在模型学习速度和建模预测稳定性方面获得较好的均衡。  相似文献   

3.
选择性集成学习算法综述   总被引:39,自引:0,他引:39  
张春霞  张讲社 《计算机学报》2011,34(8):1399-1410
集成学习因其能显著提高一个学习系统的泛化能力而得到了机器学习界的广泛关注,但随着基学习机数目的增多,集成学习机的预测速度明显下降,其所需的存储空间也迅速增加.选择性集成学习的主要目的是进一步改善集成学习机的预测效果,提高集成学习机的预测速度,并降低其存储需求.该文对现有的选择性集成学习算法进行了详细综述,按照算法采用的...  相似文献   

4.
冠心病的早期无创性诊断一直是医疗诊断领域的研究热点,为了提高冠心病诊断的准确率和诊断效率,提出了一种新颖的局部Fisher判别分析(LFDA)特征提取方法和集成核极限学习机(KELM)相结合的冠心病诊断模型(LFDA-EKELM)。首先使用LFDA方法剔除不相关特征和冗余特征,找出对分类结果贡献度较高的特征子集,产生不同的训练集以训练粒子群优化的KELM分类器PSO-KELM,并基于旋转森林(RF)构建集成分类器,实现冠心病的智能诊断。实验结果表明,与基于ELM、SVM和BPNN方法相比,提出方法有效提高了冠心病诊断准确率,提升了诊断效率,且分类结果高于已有方法和相似方法,是一种有效冠心病诊断模型。  相似文献   

5.
针对传统的批量学习算法学习速度慢、对空间需求量高的缺点,提出了一种基于簇的极限学习机的在线学习算法。该算法将分簇的理念融入到极限学习机中,并结合极限学习机,提出了一种基于样本类别和样本输出的分簇标准;同时提出了一种加权的Moore-Penrose算法求隐层节点与输出节点的连接权重。实验结果表明,该算法具有学习能力好、拟合度高、泛化性能好等优点。  相似文献   

6.
骨髓细胞的分类有重要的医学诊断意义。先对骨髓细胞图像分割和特征提取,用提取出来的训练集对极限学习机训练,再用该分类器对未知样本识别。针对单个分类器性能的不稳定,提出基于元胞自动机的极限学习机集成算法。通过元胞自动机抽样策略构建差异大的训练子集,多个分类器并行学习,多数投票法联合决策。实验结果表明,与BP、支持向量机比较,该算法基本无参数调整,学习速度快,分类精度高能达到97.33%,且有效克服了神经网络分类器不稳定的缺点。  相似文献   

7.
陈全  赵文辉  李洁  江雨燕 《微机发展》2010,(2):87-89,94
通过选择性集成可以获得比单个学习器和全部集成学习更好的学习效果,可以显著地提高学习系统的泛化性能。文中提出一种多层次选择性集成学习算法,即在基分类器中通过多次按权重进行部分选择,形成多个集成分类器,对形成的集成分类器进行再集成,最后通过对个集成分类器多数投票的方式决定算法的输出。针对决策树与神经网络模型在20个标准数据集对集成学习算法Ada—ens进行了实验研究,试验证明基于数据的集成学习算法的性能优于基于特征集的集成学习算法的性能,有更好的分类准确率和泛化性能。  相似文献   

8.
通过选择性集成可以获得比单个学习器和全部集成学习更好的学习效果,可以显著地提高学习系统的泛化性能。文中提出一种多层次选择性集成学习算法,即在基分类器中通过多次按权重进行部分选择,形成多个集成分类器,对形成的集成分类器进行再集成,最后通过对个集成分类器多数投票的方式决定算法的输出。针对决策树与神经网络模型在20个标准数据集对集成学习算法Ada—ens进行了实验研究,试验证明基于数据的集成学习算法的性能优于基于特征集的集成学习算法的性能,有更好的分类准确率和泛化性能。  相似文献   

9.
极限学习机(Extreme Learning Machine,ELM)是一种高效率的单隐层前馈神经网络,由于其训练速度快与泛化性能好,在各个领域中都有广泛的应用。但是极限学习机随机生成输入权值与隐含层偏置矩阵,随机性影响训练模型的泛化性能与稳定性,降低模型分类的精度。为了解决这一问题,借鉴蚁狮优化算法中利用蚁狮种群中的多个个体进行并行寻优的能力,改进优化极限学习机的输入权值与隐含层偏置矩阵,得到一个分类精度更高模型。以UCI标准数据库中数据进行分类实验分析验证,实验结果表明,在5类UCI数据集上基于蚁狮优化的极限学习机(ALO-ELM)相比于PSO-ELM和SaDE-ELM具有更高的分类精度。  相似文献   

10.
将极限学习机算法与旋转森林算法相结合,提出了以ELM算法为基分类器并以旋转森林算法为框架的RF-ELM集成学习模型。在8个数据集上进行了3组预测实验,根据实验结果讨论了ELM算法中隐含层神经元个数对预测结果的影响以及单个ELM模型预测结果不稳定的缺陷;将RF-ELM模型与单ELM模型和基于Bagging算法集成的ELM模型相比较,由稳定性和预测精度的两组对比实验的实验结果表明,对ELM的集成学习可以有效地提高ELM模型的性能,且RF-ELM模型较其他两个模型具有更好的稳定性和更高的准确率,验证了RF-ELM是一种有效的ELM集成学习模型。  相似文献   

11.
朱庆保 《计算机工程》2005,31(1):157-159
为了改进蚁群优化算法的收敛速度,研究了一种基于粗粒度模型的并行蚁群优化算法,该算法将搜索任务划分给q个子群,由这些子群并行地完成搜索,可使搜索速度大幅度提高。实验结果表明,用该算法求解TSP问题,收敛速度比最新的改进算法快百倍以上。  相似文献   

12.
基于改进蚁群优化算法的分布式多播路由算法   总被引:3,自引:3,他引:0  
蚁群优化算法在优化计算特别是在多播路由问题中得到了广泛应用,但在进行大规模优化时,蚁群算法与其它随机优化算法一样,存在着收敛速度慢易于限于局部最小点等缺点。为此,该文提出了一种新的改进蚁群算法。仿真实验表明,应用这种改进型蚁群算法于多播路由问题,可以得到比现有启发式算法更好的结果。  相似文献   

13.
分析组播路由算法和蚁群优化算法,并通过仿真实验评价了以蚁群优化为基础的组播路由算法的优化方法。当路由计算的规模较大时,信息中未搜索到的数量能够减少并趋近0,将路由算法的全局搜索能力降低。蚁群算法中,蚂蚁的数量与算法的全局搜索能力呈正相关,但蚂蚁的数量在增加的过程中会影响其收敛速度。通过蚁群优化组播路由算法,能够在规模的限定下,提高算法的搜索能力。  相似文献   

14.
针对云计算中虚拟机批量部署问题,在定义虚拟机与服务器匹配距离的基础上,使用蚁群优化思路进行部署方案搜索,并有针对性地对蚁群算法进行了扩展改进。首先在蚁群算法随机比例规则中加入性能感知策略,以尽量避免将相同性能偏好的虚拟机部署在同一台服务器上,造成对硬件资源竞争的危险。同时增加了单一蚂蚁信息素更新规则,以减少错误先验知识对蚂蚁后续选择的误导。通过在CloudSim中的仿真实验,对算法参数选择进行了研究。与现有部署算法相比,本算法具有更好的系统负载均衡性能和资源利用率,以及比基本蚁群算法更快的收敛速度。  相似文献   

15.
极限学习机的相异性集成算法(Dissimilarity Based Ensemble of Extreme Learning Machine,D-ELM)在基因表达数据分类中能够得到较稳定的分类效果,然而这种分类算法是基于分类精度的,当所给样本的误分类代价不相等时,不能直接实现代价敏感分类过程中的最小平均误分类代价的要求。通过在分类过程中引入概率估计以及误分类代价和拒识代价重新构造分类结果,提出了基于相异性集成极限学习机的代价敏感算法(CS-D-ELM)。该算法被运用到基因表达数据集上,得到了较好的分类效果。  相似文献   

16.
计算机网络规模的逐渐扩大使数据传输时的延时、丢包等现象日益明显.为了提高网络数据传输的稳定性,降低网络消耗,研究使用蚁群算法解决计算机网络的路由优化问题.同时,为了提高蚁群算法的性能,提出了状态转移规则和信息素更新规则的改进策略,使蚁群算法的收敛速度得到明显提升.仿真结果表明,上述改进蚁群算法可以在较短时间内计算出路由优化的结果,优化成功率较高,非常适合实际应用.  相似文献   

17.
蚁群算法物流配送中心选址优化仿真研究   总被引:3,自引:0,他引:3  
王坤 《计算机仿真》2012,(4):251-254
研究物流配送选址优化调度问题。为了有效节约车辆运输成本,应选择最优路径。城市车辆调度路径选择,存在路网复杂性,参数设置较多,传统的调度算法存在计算复杂度高,不利于实际应用。为解决优化选址问题,提出了一种改进的蚁群优化物流配送选址方法。算法把求得的解首先分解为解对,然后通过改进的蚁群优化算法将解对从不确定性转变成确定性问题,可以大大的降低求解过程。通过仿真表明,提出的优化算法不但降低了计算的复杂度,优化了选址模型,而且为解决物流选址问题提供了新的有效途径。  相似文献   

18.
极端学习机因其学习速度快、泛化性能强等优点,在当今模式识别领域中已经成为了主流的研究方向;但是,由于该算法稳定性差,往往易受数据集中噪声的干扰,在实际应用中导致得到的分类效果不是很显著;因此,为了提高极端学习机分类的准确性,针对数据集样本中带有噪声和离群点问题,提出了一种基于角度优化的鲁棒极端学习机算法;该方法利用鲁棒激活函数角度优化的原则,首先降低了离群点对分类算法的影响,从而保持数据样本的全局结构信息,达到更好的去噪效果;其次,有效的避免隐层节点输出矩阵求解不准的问题,进一步增强极端学习机的泛化性能;通过应用在普遍图像数据库上的实验结果表明,这种提出的算法与其他算法相比具有更强的鲁棒性和较高的识别率。  相似文献   

19.
基于多样信息素的蚁群算法   总被引:4,自引:0,他引:4  
根据蚁群算法信息素更新的特性,提出了求解旅行商问题的多样信息素的蚁群算法。把蚁群的三种不同的信息素更新方式混合在一起,既利用了局部信息,又考虑了整体信息,将局部搜索和全局搜索相结合,使收敛性得到提高。针对旅行商问题的仿真实验结果,表明了该混合算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号