首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
由于车辆行驶状况复杂多样,传统静态工况无法复现各类恶劣路况下后底盘转向节真实应力,因此在利用MotionView建立整车刚柔耦合多体动力学模型的基础上,将后转向节利用柔性体进行模拟;在进行虚拟试验场仿真分析的同时采用模态综合法计算结构动应力,得到后转向节最高应力位置及发生时刻.仿真结果与整车道路试验结果的对比表明仿真方法准确.  相似文献   

2.
针对目前汽车焊点疲劳分析方法精度低、建模复杂等问题,以某自主SUV车身焊点为研究对象,采集道路载荷谱,通过载荷虚拟迭代得到底盘与车身连接点的载荷.研究结果表明,对车身焊点分别使用基于力(载荷)和应力的疲劳分析,可以准确预测试验样车焊点开裂位置,缩短焊点疲劳分析周期.改进后的样车顺利通过耐久试验场验证.  相似文献   

3.
李全  吴泓  梁刚 《计算机辅助工程》2006,15(Z1):102-105
基于模态分析技术,联合有限元软件MSC Patran/Nastran与动力学仿真软件MSC Adams对某曲轴刚柔体混合模型进行动力学分析,得到曲轴在工作循环中的动态应力. 同时提取曲轴载荷谱输入到MSC Fatigue中进行疲劳强度分析,求得曲轴疲劳寿命.  相似文献   

4.
为分析某牵引车在比利时路上的车架疲劳,建立该牵引车整车多体动力学模型。将试验测得的车轮六分力加载到模型中进行仿真分析,并与试验结果对比,验证模型的可信性。提取多体动力学仿真结果中的车架载荷历程,基于模态应力恢复理论对车架进行疲劳分析,预测车架疲劳寿命。仿真结果表明该分析方法可作为车架疲劳分析的有效手段。  相似文献   

5.
针对目前高铁线路上所使用的动车组列车,通过提取关键部位的载荷谱进行寿命分析,利用有限元法在UIC615-4的标准下,分超常载荷工况和模拟运营载荷工况对轴箱体分别进行静强度和动强度分析.得到在超常载荷工况下和模拟运营载荷工况下,轴箱体所受最大应力都出现在轴箱转臂右侧的孔的位置,其应力值的大小分别是175.29 MPa和9...  相似文献   

6.
针对客车车架强度分析时空气弹簧悬架边界条件难以设置的问题,提出使用等效静态载荷法进行悬架模拟的思路。分析空气弹簧刚度的非线性和双横臂独立悬架的机构模型,建立整车多体动力学模型,计算多工况下车架与空气弹簧悬架连接位置处的受力,求解得到等效静态载荷并施加到有限元模型中,添加辅助约束完成边界条件设置;对车架进行多工况下的强度分析,比较不同工况下车架的应力分布和最大应力出现的位置。搭建试制样机的动态测试平台,对比仿真结果与试验结果,验证模拟方法的有效性。  相似文献   

7.
堆料装置是应用于散料料场堆积料堆的工作机构,工作时在空间大范围内运动,堆料装置的动态稳定性影响安全运行.若堆料装置俯仰油缸推力过大或者主体部件的刚度和强度不足,都可能会引起结构的早期断裂等一系列影响堆料装置安全.为了提高堆料装置的动态稳定性和主体部件强度,建立了堆料装置的参数化模型,利用多体系统动力学仿真软件ADAMS中动力学仿真与参数化优化分析的功能,对俯仰油缸两铰点位置的布置进行合理的仿真优化,结果表明优化后俯仰油缸推力大幅减小,结构布置更加合理,并求得相关铰接点的受力信息.利用ADAMS中的计算结果作为载荷条件,在ANSYS中对堆料装置主体结构件进行J多工位的有限元分析,并对其中强度薄弱的部位进行了设计调整,进一步保证和提高了优化后堆料装置的动态稳定性.  相似文献   

8.
基于动力学仿真的系留气球鼻锥有限元分析   总被引:1,自引:0,他引:1  
杨燕初  王生  马毅 《计算机仿真》2008,25(2):57-60,73
针对系留气球进行了动力学仿真分析,在此基础上对一种用于固定球体的新型鼻锥结构进行了结构有限元分析,以确定其强度与刚度.首先采用计算流体力学CFD求得特定风速下系留气球所受的气动力,随后通过多体动力学软件Adams进行动力学仿真分析,确定作用在鼻锥上载荷的大小,并以此作为有限元分析的载荷边界条件;然后采用有限元分析的方法对鼻锥结构进行静力学和动力学分析;最后确定极限风速下艇首与鼻锥连接处的变形、载荷及应力情况.通过分析,为新型鼻锥结构进一步的设计改进与优化提供了参考依据.  相似文献   

9.
以某型挖掘机为研究对象,建立其工作装置刚柔耦合动力学模型,基于实测油缸位移数据驱动该模型,得到其主要性能参数和典型工况危险部位应力.根据强度理论、动力学仿真结果和工程经验,分析挖掘机动臂和斗杆的易开裂部位,得到典型焊缝高危点,并通过实测应力应变数据进行验证.以刚柔耦合动力学仿真所得的铰点载荷作为输入,利用nCode疲劳分析软件仿真预测挖掘机动臂和斗杆的疲劳寿命.结果表明,实测数据驱动的刚柔耦合动力学仿真可以准确获取挖掘机实际挖掘过程的动力学特性,基于该仿真模型提取铰点载荷并用于预测疲劳寿命的方法切实可行.  相似文献   

10.
针对轿车车身开发过程中传统耐久性试验周期长、费用高且不容易在开发前期暴露风险的问题,采用虚拟试验方法,基于实测道路载荷谱并结合多体动力学及有限元仿真技术进行车身疲劳寿命预测.仿真结果与实测应变片台架试验结果一致性很好.该方法能够快速反映风险,大幅缩短开发周期、降低费用.  相似文献   

11.
针对结构形状及受载复杂的汽车零部件的载荷测试,采用矩阵标定方法进行载荷测试.根据CAE应力仿真结果确定应变贴片位置并利用CAE方法模拟试验矩阵标定过程,确定可行的试验矩阵标定方案;开展试验矩阵标定和路谱采集,得到试验标定矩阵和应变历程并计算零部件的载荷.以某款汽车后悬架拖曳臂标定为例阐述标定过程,并验证该方法可行.该方法能提升复杂零部件的载荷测试、动力学载荷分解和疲劳试验精度.  相似文献   

12.
13.
针对车身疲劳分析中静载法无法考虑结构动力学响应,瞬态分析法无法求解过长时间域的问题,将这2种方法与频域法进行比较,发现用频域法对大规模有限元模型进行动态疲劳分析相对容易,并能完全描述动力学响应过程.根据频域法进行振动疲劳分析的理论和计算过程,给出基于路谱频域的车身疲劳分析流程.基于功率谱密度(Power Spectral Density,PSD)载荷谱的传递函数法求解某车关键部件的疲劳寿命,求解结果与疲劳试验结果比较一致.结果表明基于路谱频域的振动疲劳分析方法在汽车结构疲劳计算中的应用可行.  相似文献   

14.
针对应用刚体动力学方法不能得到驾驶员可以直接感知的振动加速度的缺陷,提出应用整车柔性体模型进行汽车随机路面平顺性分析的方法.对一种典型路面不平度数据进行处理并将得到的功率谱密度(Power Spectral Density,PSD)作为激励,建立整车有限元模型,通过试验模态验证该模型后进行传递函数分析;根据所得的激励和传递函数的结果计算得出汽车方向盘处的速度响应.该速度响应与随机路面平顺性试验一致性较好。  相似文献   

15.
基于有限元仿真的特种越野车结构疲劳寿命预测   总被引:1,自引:0,他引:1  
龙梁  胡爱华  范子杰 《计算机仿真》2006,23(12):253-256
为缩短新车开发周期、节约样车制造费用,给车辆轻量化设计提供参考,在计算机仿真环境下预测了某特种越野车关键部件的疲劳寿命。基于该车结构有限元模型动力学计算的频响结果,对计算模型施加不同车速下等级路面位移谱,得到了不同车速不同级别路面下该车关键部件的应力响应谱,并在此基础上运用随机疲劳理论预测了该车的疲劳寿命。所研究的内容为车辆的疲劳寿命预测提供了较为可靠的流程和方法,所预测寿命结果在合理范围内,并提供了关键部件疲劳寿命的薄弱位置。  相似文献   

16.
Vehicle simulators traditionally model a vehicle's components separately. This paper describes a “holistic” simulator that constructs a map of fuel consumption vs speed, acceleration, and gear for the vehicle as a whole, based on statistical analysis of road test data. A single computer routine can simulate any number of existing vehicles, once each is outfitted with instruments and a data logger and is tested 1 to 2 days on the road and perhaps on a chassis dynamometer. Results of simulating a 1979 Ford Fairmont station wagon are presented.  相似文献   

17.
张凤  罗映红 《自动化仪表》2012,33(8):55-57,60
防抱死制动系统(ABS)是汽车安全系统的重要组成部分,对行驶路面状况进行实时准确的自动识别和提高ABS控制算法的鲁棒性具有重大意义。通过仿真分析,提出了一种简单有效的路面识别算法,并设计了以最优滑移率为控制目标的模糊PID控制器。结合车辆模型,对该系统在变附着系数路面的运行情况进行了仿真。结果表明,该系统能够及时判断出路面状况的变化,自动调节控制器参数,使车辆获得最大地面制动力。  相似文献   

18.
The problem of modeling vehicle longitudinal motion is addressed for front wheel propelled vehicles. The chassis dynamics are modeled using relevant fundamental laws taking into account aerodynamic effects and road slop variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. A highly nonlinear model is thus obtained and based upon in vehicle longitudinal motion simulation. A simpler, but nevertheless accurate, version of that model proves to be useful in vehicle longitudinal control. For security and comfort purpose, the vehicle speed must be tightly regulated, both in acceleration and deceleration modes, despite unpredictable changes in aerodynamics efforts and road slop. To this end, a nonlinear controller is developed using the Lyapunov design technique and formally shown to meet its objectives i.e. perfect chassis and wheel speed regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号