首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid nanocomposites consisting of polydimethylaminoethyl methacrylate (PDMAEMA) and attapulgite (ATP) were prepared by using a surface thiol‐Ce (IV) redox initiation system via graft from approach. Initially, ATP was chemically modified with γ‐mercaptopropyltrimethoxysilane (MTS) to anchor thiol groups on the surface (ATP‐MTS). Subsequently, surface‐initiated polymerization of dimethylaminoethyl methacrylate was performed by using ATP‐MTS and cerium (IV) ammonium nitrate (CAN) in aqueous nitric acid (HNO3) to afford hybrid particles (ATP‐g‐PDMAEMA). Evidence of grafting of PDMAEMA was confirmed by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and Thermogravimetric Analysis (TGA). The crystal structure of PDMAEMA grafted ATP was characterized by X‐ray diffraction (XRD) analysis. Morphology of ATP‐g‐PDMAEMA was observed by transmission electron microscopy (TEM). The effects of concentration of Ce (IV), HNO3, and reaction temperature were examined by determining the percentage of grafting (PG). With other condition kept constant, the optimum conditions were obtained as follows: the reaction temperature was 50°C, Ce (IV) and HNO3 concentrations were 12.5 mmol/L and 1 mol/L, respectively, when 0.2 g of ATP‐MTS, 1 mL of DMAEMA, and 4 mL of aqueous solution were used. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42762.  相似文献   

2.
Poly(methyl methacrylate)‐block‐polyurethane‐block‐poly(methyl methacrylate) tri‐block copolymers have been synthesized successfully through atom transfer radical polymerization of methyl methacrylate using telechelic bromo‐terminated polyurethane/CuBr/N,N,N,N″,N″‐pentamethyldiethylenetriamine initiating system. As the time increases, the number‐average molecular weight increases linearly from 6400 to 37,000. This shows that the poly methyl methacrylate blocks were attached to polyurethane block. As the polymerization time increases, both conversion and molecular weight increased and the molecular weight increases linearly with increasing conversion. These results indicate that the formation of the tri‐block copolymers was through atom transfer radical polymerization mechanism. Proton nuclear magnetic resonance spectral results of the triblock copolymers show that the molar ratio between polyurethane and poly (methyl methacrylate) blocks is in the range of 1 : 16.3 to 1 : 449.4. Differential scanning calorimetry results show Tg of the soft segment at ?35°C and Tg of the hard segment at 75°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Commercial brominated poly(isobutylene‐co‐isoprene) (BIIR) rubber has been directly used for the initiation of atom transfer radical polymerization (ATRP) by utilizing the allylic bromine atoms on the macromolecular chains of BIIR. The graft copolymerization of methyl methacrylate (MMA) from the backbone of BIIR which was used as a macroinitiator was carried out in xylene at 85 °C with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalytic complex. The polymerization conditions were optimized by adjusting the catalyst and monomer concentration to reach a higher monomer conversion and meanwhile suppress macroscopic gelation during the polymerization process. This copolymerization followed a first‐order kinetic behavior with respect to the monomer concentration, and the number‐average molecular weight of the grafted poly(methyl methacrylate) (PMMA) increased with reaction time. The resultant BIIR‐graft‐PMMA copolymers showed phase separation morphology as characterized by atomic force microscopy, and the presence of PMMA phase increased the polarity of the BIIR copolymers. This study demonstrated the feasibility of using commercial BIIR polymer directly as a macromolecular initiator for ATRP reactions, which opens more possibilities for BIIR modifications for wider applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43408.  相似文献   

4.
Polyaniline (PANI) N‐grafted with poly(ethyl acrylate) (PEA) was synthesized by the grafting of bromo‐terminated poly (ethyl acrylate) (PEA‐Br) onto the leucoemeraldine form of PANI. PEA‐Br was synthesized by the atom transfer radical polymerization of ethyl acrylate in the presence of methyl‐2‐bromopropionate and copper(I) chloride/bipyridine as the initiator and catalyst systems, respectively. The leucoemeraldine form of PANI was deprotonated by butyl lithium and then reacted with PEA‐Br to prepare PEA‐g‐PANI graft copolymers containing different amounts of PEA via an N‐grafting reaction. The graft copolymers were characterized by Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. Solubility testing showed that the solubility of PANI in chloroform was increased by the grafting of PEA onto PANI. The morphology of the PEA‐g‐PANI graft copolymer films was observed by scanning electron microscopy to be homogeneous. The electrical conductivity of the graft copolymers was measured by the four‐probe method. The results show that the conductivity of the PANI decreased significantly with increasing grafting density of PEA onto the PANI backbone up to 7 wt % and then remained almost constant with further increases in the grafting percentage of PEA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Atom transfer radical polymerization (ATRP) of 1‐(butoxy)ethyl methacrylate (BEMA) was carried out using CuBr/2,2′‐bipyridyl complex as catalyst and 2‐bromo‐2‐methyl‐propionic acid ester as initiator. The number average molecular weight of the obtained polymers increased with monomer conversion, and molecular weight distributions were unimodal throughout the reaction and shifted toward higher molecular weights. Using poly(methyl methacrylate) (PMMA) with a bromine atom at the chain end, which was prepared by ATRP, as the macro‐initiator, a diblock copolymer PMMA‐block‐poly [1‐(butoxy)ethyl methacrylate] (PMMA‐b‐PBEMA) has been synthesized by means of ATRP of BEMA. The amphiphilic diblock copolymer PMMA‐block‐poly(methacrylic acid) can be further obtained very easily by hydrolysis of PMMA‐b‐PBEMA under mild acidic conditions. The molecular weight and the structure of the above‐mentioned polymers were characterized with gel permeation chromatography, infrared spectroscopy and nuclear magnetic resonance. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
采用原子转移自由基聚合法研究了废胶粉(GTR)的表面化学接枝改性,包括2-溴异丁酰溴(BIBB)与GTR表面羟基的反应,以及形成的大分子引发剂引发甲基丙烯酸甲酯(MMA)的接枝聚合反应;用红外光谱和X射线光电子能谱仪、热重分析和扫描电子显微镜对接枝改性反应前后的GTR表面进行了表征.结果表明,GTR表面含有一定量羟基,...  相似文献   

7.
The Core‐shell hybrid particles with attapulgite (ATP) as the core and polymethylmethacrylate (PMMA) as the shell (ATP‐g‐PMMA) were prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization method. The diameter of ATP‐g‐PMMA was increased to 50–60 nm, and the surface hygroscopicity was decreased observably after surface grafting. Then, ATP‐g‐PMMA hybrid particles were filled into the polycarbonate (PC) by melt mixing to afford nanocomposites, and the mechanical properties, microstructures, thermal stability, and rheological behavior of nanocomposites were investigated by varying ATP‐g‐PMMA concentration in the range 1, 3, 5, and 7 wt % in PC. Fourier Transform infrared spectroscopy (FTIR) suggested that there is no esterification reaction between particles and matrix. Slight changes in tensile strength, and noticeable decrease of elongation and impact strength were observed with the increase in ATP‐g‐PMMA particles loading. The morphology evaluated by field‐emission scanning electron microscopy (FESEM) indicated that ATP‐g‐PMMA was dispersed with a diameter range of 80–100 nm, and phase separation was appeared with increasing ATP‐g‐PMMA loadings. Thermogravimetric analysis (TGA) results revealed the thermal stability of composites was strengthened. The disentanglement and interface slip induced by preferred orientation and directional arrangement of ATP‐g‐PMMA resulted in lower complex viscosity (η*) and higher loss factor (tan δ) compared with the pristine PC. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42262.  相似文献   

8.
The effect of surfactant (sodium dodecyl sulfate) concentration on particle size, molar masses, glass transition, and tacticity of poly(methyl methacrylate) (PMMA) nanoparticles synthesized by semicontinuous heterophase polymerization under monomer‐starved condition at constant monomer feeding rate is reported. Starved conditions are confirmed by the low amount of residual monomer throughout the reaction and by the fact that the instantaneous polymerization rate is similar to the feeding rate of monomer. Under these conditions, polymer particles in the nanometer range (20–30 nm) were obtained with narrow size distribution (1.07 < Dw/Dn < 1.18), depending of surfactant concentration. Final particle size diminishes as the surfactant concentration is increased. Glass transition temperatures and syndiotactic content (54%–59%) of the produced polymers are substantially higher than those reported for commercial and bulk‐made PMMA. Molar masses are much lower than those expected from termination by chain transfer to monomer, which is the typical termination mechanism in 0–1 emulsion and microemulsion polymerization of this monomer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
A reverse atom transfer radical polymerization (ATRP) with FeCl3/PPh3/peroxides was applied to grafting of methyl methacrylate (MMA) to polyethylene (PE). Peroxides on PE were generated by γ-ray irradiation in air. A reverse ATRP of methyl methacrylate with benzoyl peroxide, cumene hydroperoxide, and di-t-butyl peroxide as models of the PE peroxides was confirmed to proceed successfully in living fashion. In an inhomogeneous (bulk) grafting system, the grafting ratio (GR) of PMMA to PE weights, molecular weight (Mn) and its distribution of grafted PMMA were not controlled with time, i.e. the grafting of MMA with a reverse ATRP to the oxidized PE failed in well-defined grafting. On the other hand, a homogeneous (in o-xylene solution) grafting system provided a well-controlled Mn, narrow polydispersity of grafted PMMA and a linear relation between Mn and GR, indicating a controlled grafting. The controlled grafting with a reverse ATRP combined to a radiation-induced grafting was achieved successfully. The grafting of MMA to polypropylene in this way also seemed to be controlled well.  相似文献   

10.
The controllability of the atom transfer radical polymerization of methyl methacrylate in the polar solvent N,N‐dimethylformamide and the nonpolar solvent xylene with 4‐(chloromethyl)phenyltrimethoxysilane as an initiator and with CuCl/2,2′‐bipyridine and CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as catalyst systems was studied. Gel permeation chromatography analysis established that in the nonpolar solvent xylene, much better control of the molecular weight and polydispersity of poly(methyl methacrylate) was achieved with the CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine catalyst system than with the CuCl/2,2′‐bipyridine as catalyst system. In the polar solvent N,N‐dimethylformamide, unlike in xylene, the polymerization was more controllable with the CuCl/2,2′‐bipyridine catalyst system than with the CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine catalyst system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2751–2754, 2007  相似文献   

11.
Poly(n‐butyl methacrylate) (PBMA)‐b‐polystyrene (PSt) diblock copolymers were synthesized by emulsion atom transfer radical polymerization (ATRP). PBMA macroinitiators that contained alkyl bromide end groups were obtained by the emulsion ATRP of n‐butyl methacrylate with BrCH3CHCOOC2H5 as the initiator; these were used to initiate the ATRP of styrene (St). The latter procedure was carried out at 85°C with CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as the catalyst and polyoxyethylene(23) lauryl ether as the surfactant. With this technique, PBMA‐b‐PSt diblock copolymers were synthesized. The polymerization was nearly controlled; the ATRP of St from the macroinitiators showed linear increases in number‐average molecular weight with conversion. The block copolymers were characterized with IR spectroscopy, 1H‐NMR, and differential scanning calorimetry. The effects of the molecular weight of the macroinitiators, macroinitiator concentration, catalyst concentration, surfactant concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2123–2129, 2005  相似文献   

12.
Surface modification of carbon fibre (CF) by well‐defined polymer brushes was carried out using the ‘grafting from’ method. Poly(methyl methacrylate)‐grafted carbon fibre (CF‐PMMA) was successfully prepared by surface‐initiated atom‐transfer radical polymerization (SI‐ATRP) of methyl methacrylate (MMA) from the macro‐initiator, bromo‐acetic ester‐modified carbon fibre (CF‐BrA), with the complex of 1,10‐phenanthroline and Cu(I)Br as catalyst. The percentage of grafting (PG%) and the conversion of monomer (C%) increased linearly with increasing of polymerization time, and reached 24.0 % and 6.7 %, respectively, after a polymerization time of 6 h, calculated from the elemental analyses (EA). The structural and surface morphological analyses were conducted with Fourier‐transform infrared (FTIR) spectroscopy, X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Copyright © 2005 Society of Chemical Industry  相似文献   

13.
A new kind of initiator, 3‐(2‐bromo‐2‐methylacryloxy)propyltriethysiliane (MPTS‐Br), was prepared with a simply hydrobrominated commercial silane coupling agent (3‐methacryloxy‐proplytriethysilane, MPTS). It has been one‐step self‐assemble onto the surface of attapulgite (ATP) nanorods in the dispersion system, and by using this initiator‐modified nanorod (MPTS‐Br‐modified ATP nanoparticles, ATP‐MPTS‐Br) as macroinitiator for atom transfer radical polymerization (ATRP). Structurally well‐defined homopolymer polystyrene (PS) and block polymer poly(styrene‐b‐methyl methacrylate) (PS‐b‐PMMA) chains were then grown from the needle‐shaped nanorods surface to yield monodispersed nanorods composed of ATP core and thick‐coated polymer shell (ATP and PS). The graft polymerization parameters exhibited the characteristics of a controlled/”living” polymerization. The PS‐grafted ATP nanorods could be dispersed well in organic solvent with nanoscale. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Amphiphilic copolymers of pullulan grafted with poly(methyl methacrylate) (PMMA) were synthesized by atom transfer radical polymerization under homogeneous mild conditions without using protecting group chemistry. The hydroxyl groups of pullulan were reacted with 2‐bromoisobutyryl bromide to prepare pullulan macroinitiators with various degrees of substitution. Kinetic study showed that the polymerization was first order. The copolymers were characterized using 1H NMR spectroscopy and gel permeation chromatography. The molecular weights of the grafted chains were controlled and polydispersities were low. Association properties in aqueous solution were studied using 1H NMR spectroscopy, dynamic light scattering and transmission electron microscopy. Spherical nanoparticles with size and size distribution significantly affected by the number and length of the grafted chains were formed. Graft copolymers with a degree of substitution of 5.3% and length of PMMA grafted chains from 5 to 35 repeating units formed well‐defined quite monodisperse spherical nanoparticles with hydrodynamic diameters in the range 20–40 nm. This means that nanoparticle size can be tuned by changing the length of the grafted chains for this degree of substitution. Less control of aggregate size was obtained for a degree of substitution of 1.0%. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
Poly(methyl methacrylate) brushes grafted from attapulgite nanoparticles (ATP@PMMA) were prepared by R-Supported reversible addition-fragmentation chain transfer polymerization (RAFT). ATP was firstly activated, and allowed to react with γ-aminopropyltriethoxysilane (APTES), 4,4′-azobis(4-cyanovaleric acid) (ACVA) and bis(thiobenzoyl) disulfide stepwise to afford 4-cyanopentanoic acid dithiobenzoate functionalized ATP (ATP-CPADB). Then, RAFT polymerizations of MMA mediated by the different systems were conducted and compared systemically. The grafting process was verified by FTIR, XRD, XPS, TGA and TEM data. Kinetic behavior indicated that the anchored CPADB is more effective before diffusing into the bulk phase. The grafting ratio (G r), while M n of grafted and free polymer increased linearly with increasing monomer conversion in presence of free CPADB, giving the hybrid particles with more homogeneous distribution of grafted polymer layer.  相似文献   

16.
Living radical polymerization of methyl methacrylate (MMA) through the use of benzyl diethyl dithiocarbamate (BDC) was studied. The aim was to investigate the role of the concentration, BDC‐to‐MMA mol ratio, and reaction time upon the molecular weight, polydispersity, and conversion of the product. It was found that the molecular weight and the conversion increase with increase of the concentration at the expense of low polydispersity. The reaction time also played a significant role, especially at a relatively long reaction time where molecular weight, polydispersity, and conversion increased with increasing reaction time. In terms of the mol ratio effect, it was found that there was a critical mol ratio for maximum conversion. The results indicate that the kinetics of polymerization of MMA through the use of a BDC inifeter is different from that in the presence of a conventional initiator. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 938–944, 2000  相似文献   

17.
In this work, we propose a modified frontal polymerization method to build a uniform reaction front by gradually immersing the reacting mixture in a thermal bath. This scheme allows uniform materials to be obtained with nearly constant molecular weights and polydispersities and a low residual monomer concentration. A comparative study of the molecular weight distributions of poly(methyl methacrylate)s obtained by bulk polymerization, frontal polymerization, and frontal polymerization with the proposed gradual immersion is presented. Samples obtained by these methods show that materials obtained by bulk polymerization and by frontal polymerization are less uniform than those obtained by frontal polymerization with gradual immersion in a thermal bath. The obtained uniformity is directly related to a stabilizing effect of the reaction front by the gradual immersion of the reactor in a constant‐temperature bath and to a reduction in the reaction rate promoted by a moderate transfer agent concentration. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
A new graft copolymers poly(aryl ether sulfone)‐graft‐polystyrene (PSF‐g‐PS) and poly(aryl ether sulfone)‐graft‐[polystyrene‐block‐poly(methyl methacrylate)] (PSF‐g‐(PS‐b‐PMMA)) were successfully prepared via atom transfer radical polymerisation (ATRP) catalyzed by FeCl2/isophthalic acid in N,N‐dimethyl formamide. The products were characterized by GPC, DSC, IR, TGA and NMR. The characterization data indicated that the graft copolymerization was accomplished via conventional ATRP mechanism. The effect of chloride content of the macroinitiator on the graft copolymerization was investigated. Only one glass transition temperature (Tg) was detected by DSC for the graft copolymer PSF‐g‐PS and two glass transition temperatures were observed in the DSC curve of PSF‐g‐(PS‐b‐PMMA). The presence of PSF in PSF‐b‐PS or PSF‐g‐(PS‐b‐PMMA) was found to improve thermal stabilities. © 2002 Society of Chemical Industry  相似文献   

19.
Well‐defined poly(methyl methacrylate) (PMMA) with an α‐isobutyronitrile group and an ω‐bromine atom as the end groups was synthesized by the microemulsion polymerization of methyl methacrylate (MMA) at 70°C with a 2,2′‐azobisisobutyronitrile/CuBr2/2,2′‐bipyridine system. The conversion of the polymerization reached 81.9%. The viscosity‐average molecular weight of PMMA was high (380,000), and the polydispersity index was 1.58. The polymerization of MMA exhibited some controlled radical polymerization characteristics. The mechanism of controlled polymerization was studied. The presence of hydrogen and bromine atoms as end groups of the obtained PMMA was determined by 1H‐NMR spectroscopy. The shape and size of the final polymer particles were analyzed by scanning probe microscopy, and the diameters of the obtained particles were usually in the range of 60–100 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3670–3676, 2006  相似文献   

20.
It is successfully realized that block copolymers are synthesized via metathesis polymerization followed by free‐radical polymerization. This method is performed using styrene (St) and norbornene, one block is synthesized using the Grubbs second generation catalyst in the presence of chain transfer agents, and the subsequent polymerization of St is initiated by azo compounds to complete the additional blocks in the copolymers. The use of free‐radical polymerization instead of controlled radical polymerization or ionic polymerization can be potentially superior for industrialization. As a result, the molecular weights of the block copolymers ranging from 10.4 to 54.3 kDa and polydispersity indices ranging from 1.30 to 1.91 are obtained. In principle, this new method can be potentially useful to prepare a broad range of block copolymers with cyclic olefin groups in the main chains, which may be used in some particular applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号