首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The low bonding strength between hydroxyapatite (HA) and the metal substrate interface of plasma-sprayed HA coating has been a point of potential weakness in its application as a biomedical prosthesis. In the present study, yttria-stabilized (8 wt%) zirconia (YSZ) has been used to enhance the mechanical properties of HA coatings. The effects of YSZ additions (in the range 10–50 wt%) on the phase composition, microstructure, bond strength, elastic modulus, and fracture toughness of plasma-sprayed HA/YSZ composite coatings have been studied. The results indicated that decomposition of HA during plasma spraying was reduced significantly with the addition of zirconia. The higher the zirconia content, the lower the amount of calcium oxide, tricalcium phosphate, and tetracalcium phosphate formed in the coatings. In addition, there was a trace of calcium zirconate formed when less than 30 wt% zirconia was present. A solid solution of HA mixed with YSZ formed during plasma spraying; however, the amount of unmelted particles increased as the zirconia increased. The mechanical properties of the HA/YSZ composite coatings, such as bond strength, elastic modulus, and fracture toughness, increased significantly as the contents of zirconia increased.  相似文献   

2.
The integration of biological and mechanical requirements remains a challenge in developing porous hydroxyapatite (HA) and tri‐calcium phosphate (TCP) scaffolds for load‐bearing bone implant application. With the newly developed slip‐deposition and coating‐substrate co‐sintering technique, a strong layered HA/TCP‐zirconia scaffold composite structure was successfully fabricated. The bending strength (321 MPa) of this composite can match upper strength limit of the natural compact bone. The HA‐based scaffold coating has multiple scale porous structures with pore size ranging 1–10 and 20–50 μm. The zirconia‐based substrate is also porous with submicropores. Focus ion beam micrographs show most of the micropores in the coating are interconnected. Microindentation and primarily adhesive strength tests demonstrate that the scaffold coating strongly bonds with the zirconia based substrate. In vitro cell culture study indicates that the coatings have no cytotoxicity. It is evident that the strong layered HA–zirconia scaffold composite offers new implant options for bone repairs requiring immediate load bearing capacity.  相似文献   

3.
A nano-sized hydroxyapatite (HA) layer was coated on a Ti substrate with a titanium oxide (TiO2) buffer layer by the electron-beam deposition method. The morphological features as well as the mechanical and biological properties of the HA/TiO2-layered coating were noticeably different from those of a conventional HA coating on Ti. The HA on the TiO2 layer replicated the fine grain structure of the TiO2 layer, with grain sizes of just a few tens of nanometers. The TiO2 buffer layer was highly effective in preserving the adhesion strength of the coating layer following the heat treatment at 500°C, which was necessary to crystallize the structure. Moreover, in contrast to the HA single coating wherein severe cracking was observed under moist conditions, the HA/TiO2 coating retained its mechanical stability under the same conditions. The dissolution of the HA/TiO2 coating in a physiological saline solution exhibited a more favorable pattern than that of the HA single coating, with a reduced initial burst and a subsequent steady release rate. Preliminary in vitro cellular tests showed that osteoblastic cells expressed a significantly higher alkaline phosphatase level on the HA/TiO2 coating than on the HA single coating. Conclusively, the nano-sized HA coating with the TiO2 buffer layer holds great promise as a bioactive coating system.  相似文献   

4.
Hydroxyapatite/polyetheretherketone (HA/PEEK) composite materials were prepared via an in situ synthesis process in order to achieve strong bonding between PEEK matrix and hydroxyapatite fillers, and ultimately to improve the mechanical properties of the composites. In the study, the biocompatibility of the synthesized HA/PEEK materials was investigated by acute toxicity test, hemolytic test, sensitization test, pyrogen test, intradermal test, and toxicity assay test on animal tissue and cells for the purpose of examining the possible adverse effects of the residue organic chemicals from the in situ synthesis process. In vivo bioactivity of both lab‐synthesized PEEK and HA/PEEK composites with various HA content was also studied. It is found that the in situ synthesized composite materials possess good biocompability without toxicity. Although the bioactivity of the material increases with HA content, the composite material with 5.6 vol % HA exhibits satisfactory bioactivity without compromising its excellent mechanical performance, which hints to a potential use as load‐bearing orthopedic material. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
金属基生物活性羟基磷灰石涂层材料的研究进展   总被引:4,自引:0,他引:4  
王周成  黄龙门 《硅酸盐通报》2006,25(1):57-62,108
羟基磷灰石(HA)是人体和动物的骨骼和牙齿的主要无机成分,人工合成的羟基磷灰石具有良好的生物相容性和生物活性,但质脆;医用金属材料具有较好的强度、韧性和优良的加工性能,但是生物相容性差。金属基生物活性HA涂层材料兼备金属材料优良的力学性能和生物陶瓷材料的生物相容性,成为近年来发展最为迅速的一种生物材料。本文简要评述了国内外金属基HA涂层材料的研究进展状况,主要介绍了制备金属基HA涂层材料的各种物理化学方法,提出了一些存在的问题和解决方法,展望了制备HA复合涂层的发展前景。  相似文献   

6.
《Ceramics International》2020,46(1):824-832
To improve the long-term corrosion resistance of biodegradable AZ31 magnesium alloy, the micro-nano structural hydroxyapatite (HA) coating was fabricated on AZ31 substrate by hydrothermal treatment. The compact and high crystallinity HA coating prepared at 120 °C had excellent electrochemical properties. Moreover, the cell viability experiment revealed that the micro-nano structure coating was conducive to the viability and proliferation of MC3T3-E1 osteoblasts. The immersion experiment in simulated body fluid (SBF) solution showed that the micro-nano structural HA coatings could quickly induce the production of HA mineralization, and then the mineralization evolved into a compact mineralized layer on the surface of coated sample, which provided a long-term protection for the specimen. Even after 147 days of immersion, the coated samples remained the relatively complete macroscopic shape, the corrosion rates were lower than 0.500 mm/y and the pH values of the SBF solution maintained in the range of 7.10–7.80, suggesting when these coated AZ31 magnesium alloys were used as degradable biomaterial implants, they could provide a long-term mechanical support during the healing of damaged bones.  相似文献   

7.
采用电泳沉积法在钛基体表面制备氧化石墨烯(GO)/羟基磷灰石(Ca10(PO4)6(OH)2, HA)复合涂层,通过XRD和SEM等测试手段对不同热处理条件下得到的GO/HA涂层进行表征。研究结果表明,热处理有助于促进涂层中HA结晶度的提高,600℃和800℃的热处理温度并没有导致HA发生热分解,但有可能破坏了涂层中GO的有序晶体结构。GO/HA涂层具有优异的生物活性,但随热处理温度的升高,涂层的润湿性和生物活性下降。热处理过程有利于涂层致密,加强涂层与基体的结合,800℃热处理后的涂层结合强度高达25.31 MPa。  相似文献   

8.
A 100 mT magnetic field was introduced during the plasma spraying of hydroxyapatite (HA) coating on Ti6Al4V substrate. The influence of the magnetic field on the microstructure, bonding strength, and bioactivity of the coating was investigated. Compared with as-sprayed coating, the coating sprayed under a magnetic field showed fewer porosity and microcracks and a significantly decreased absolute value of the residual stress. The bonding strength of the coating sprayed under a magnetic field was approximately 173.6 % greater than as-sprayed coating. With increasing time in simulated body fluid, the width of microcracks on the surface of both coatings first increased and then decreased. The widths of microcracks on the coating sprayed under a magnetic field were much smaller than as-sprayed coating. During spraying process, the magnetic field would enhance the wetting and flowing ability of the HA molten droplets, prolonging their cooling, which affects the microstructure and bioactivity of the coating.  相似文献   

9.
The effectiveness of hydroxyapatite (HA) coating prepared by electrodeposition technique in improving the corrosion resistance of commercially pure magnesium (CP-Mg) in simulated body fluid (SBF) is addressed. The coating formed in as-deposited condition is identified as dicalcium phosphate dehydrate (DCPD) (Brushite), which is converted to HA after immersion in 1?M NaOH at 80°C for 2?h. The XRD patterns and FTIR spectra confirm the formation of DCPD and HA. During electrodeposition, the H2PO4 ? ion is reduced and the reaction between Ca2+ ions and the reduced phosphate ions leads to the formation of DCPD, which is converted to HA following treatment in NaOH. The deposition of HA coating enables a threefold increase in the corrosion resistance of CP-Mg. The ability to offer a significant improvement in corrosion resistance coupled with the bioactive characteristics of the HA coating establish that electrodeposition of HA is a viable approach to engineer the surface of CP-Mg in the development of Mg-based degradable implant materials.  相似文献   

10.
A gradient transition multilayer hydroxyapatite/titanium nitride (HA/TiN) coating was prepared on the Ti-6Al-4V alloy by magnetron sputtering. The composition, surface topography, microstructure, adhesion strength and electrochemical properties of the as-deposited coatings were characterized by SEM/EDS, AFM, XRD, FT-IR and electrochemical workstation. The experimental results showed that the single TiN coating deposited at a partial pressure of nitrogen (N2) of 0.08?Pa had the best internal stress and tribological performance, and its volume loss was only 0.89% of that of Ti-6Al-4V alloy. The introduction of the TiN transition layer greatly improved the wear resistance of the Ti-6Al-4V alloy, and the adhesion strength of the HA layer to the substrate increased from 6.50?±?0.5?N to 11.70?±?1.2?N, an increase of 56%. The HA/TiN coating surface consisted of uniform hemispherical particles with dense structure and invisible defects (micro-cracks and pores). For the HA surface layer, the crystal structure and active hydroxyl (-OH) group was restored after heat treatment. Potentiodynamic polarization experiments indicated that the HA/TiN coating achieved the lowest corrosion current density and the most positive corrosion potential compared to the single TiN layer and Ti-6Al-4V alloy. In summary, it can be conclude that the gradient transition layer can well improve the mechanical properties and electrochemical behavior of the titanium alloy, and largely ensuring the stability of the surface bioactive coating.  相似文献   

11.
通过涂覆-烧结法在氧化铝(Al_2O_3)表面制得羟基磷灰石(HA)/氟羟基磷灰石(FHA)双层涂层,HA和FHA重复沉积在氧化铝基体上形成均匀涂层,然后在1300 ℃进行热处理.在此过程中,如果没有FHA中间层,HA会和Al_2O_3发生严重的反应,形成磷酸三钙和钙铝化合物.SEM、XRD及粘接拉伸试验表明:FHA中间层能有效地抑制HA与Al_2O_3的反应,所获得的双层涂层具有多孔粗糙的表面,但与Al_2O_3基体结合紧密.涂层经1300 ℃热处理后,其结合强度约为30 MPa.  相似文献   

12.
用恒电流沉积方法分别在ZrO(NO3)2电解液和由Ca(NO3)2及NH4H2PO4组成的电解液中制备出羟基磷灰石/二氧化锆(HA/ZrO2)梯度医用复合涂层.通过扫描电镜观察,研究了沉积电流和沉积时间对涂层形貌的影响.结果表明,当沉积电流为11.1 mA,沉积时间为400 s时,在锆电解液中可获得均匀的钛基Zr(OH...  相似文献   

13.
应用阳极氧化法在Ti-6Al-4V钛合金(TC4)表面制备了多孔TiO2涂层,在TiO2涂层表面电沉积制备了羟基磷灰石(hydroxyapatite,HA)/TiO2复合涂层,用实验用人工脑脊液(artificial cerebrospinal fluid,ACSF)体液模拟人体的脑脊液,以TC4和TiO2涂层为对比,研究了HA/TiO2涂层在浸泡过程中发生的物理化学变化,考察了HA/TiO2复合涂层抑制钛合金中元素Al和V的析出情况。结果表明:3种样品随浸泡时间的延长遵循的生长规律为:HA成核→HA晶粒长大→HA晶粒相互团簇形成一体→涂层逐渐扩大覆盖到整个基体表面;TC4,TiO2以及HA/TiO2涂层在ACSF中都能够诱导HA的生成,表现出了良好的生物活性。检测浸泡后溶液中Al和V的浓度可知,阳极氧化法制备的TiO2涂层对于Al,V元素的析出起到了一定的抑制作用,能够进一步提高钛合金的生物相容性。
Abstract:
Porous TiO2 coating was prepared on Ti-6Al-4V titanium alloy (TC4) substrate by the potentiostatic anodic oxidation method,and hydroxyapatite (HA) coating was prepared on the surface of TiO2 coating by the electrodeposition method to form HA/TiO2 composite coating. By using artificial cerebrospinal fluid (ACSF) to simulate human cerebrospinal fluid,the physicochemical changes of the HA/TiO2 coatings when soaked in ACSF were studied and compared with TC4 and TiO2 coating. Its inhabitation effects on Al and V were also studied. The results show that these three samples follow such a growth pattern:HA nucleation forma-tion,crystal growth,agglomeration,coatings formation. The bioactivity of TC4,TiO2 coating and TiO2/HA composite coating can be induced by the formation of HA in ACSF. According to the concentration of Al and V in ACSF,the TiO2 coating formed by anodic oxidation could inhibit the element precipitation more or less,and enhance the biocompatibility of titanium alloy.  相似文献   

14.
Crack‐free bioactive nanocoatings embedded with uniformly distributed silica‐rich bioactive spherical aggregates were successfully prepared in situ by controlling the micellization of a SiO2–CaO–P2O5 sol using the tri‐block copolymer P123 followed by dip‐coating onto a bio‐inert glass substrate and calcined. These hierarchically designed nanocoatings embedded with such bioactive glassy nanospheres (BGNS) enabled to induce the deposition of a densely populated, uniform, and well‐developed needlelike crystalline carbonated hydroxyapatite coating reminiscence of the mineral phase of natural bone within a short immersion time in simulated body fluid. The BGNS nanocoatings also supported the growth and attachment of human gingival fibroblasts. The results suggest that these newly designed composite nanocoatings are noncytotoxic, capable of supporting rapid and homogeneous calcium phosphate deposition as well as subsequent crystallization, and likely to be promising candidates for inert glass reinforced bone implants.  相似文献   

15.
冰醋酸介质中电泳共沉积制备生物玻璃/羟基磷灰石涂层   总被引:5,自引:1,他引:4  
通过研究生物玻璃(bioglass,BG)微粉和羟基磷灰石(hydroxyapatite,HA)微粉在水和非水介质中的分散及带电特性,选择冰醋酸为介质,使分散在其中的BG颗粒和HA颗粒表面均带上正电荷,为电泳共沉积提供了前提条件。通过对BG颗粒和HA颗粒在冰醋酸介质中电泳共沉积以及后续低温快速热处理,在钛合金基体上成功地制备出了底层致密而表层附近多孔的BG/HA涂层。并对所制备的BG/HA涂层的力学性能和微观结构及组成进行了测试分析。  相似文献   

16.
Electrospun nanofibers have attracted tremendous attention because of their similar structure with extracellular matrix. In this work, the polydopamine (PDA) coating layer was first applied to modify hydroxyapatite (HA) nanoparticles and obtain functional HA@PDA nanoparticles. Subsequently, the polylactic acid (PLA)/HA@PDA composite nanofibers were prepared via electrospinning. The hydrophilicity and water absorption of PLA/HA@PDA composite nanofibers were larger than those of PLA and PLA/HA composite nanofibers. The thermal stability, static and dynamic mechanical properties of PLA/HA@PDA composite nanofibers significantly increased because the PDA coating layer on the surface of the HA nanoparticles acted like a glue-like transition layer, which led to an increase in interfacial adhesion between HA@PDA nanoparticles and the PLA matrix. The attachment and viability of mouse embryonic osteoblast cells (MC3T3-E1) cultured on the PLA/HA@PDA composite nanofibers were significantly increased compared with those cultured on the PLA and PLA/HA composite nanofibers. These results suggested that the PLA/HA@PDA composite nanofibers have superior mechanical and biological properties, which makes it potentially useful for tissue engineering scaffolds.  相似文献   

17.
《Ceramics International》2016,42(6):6833-6845
Over the last 25 years, the philosophy behind an optimal fixation of orthopaedic implants to hard tissues progressively evolved towards “bone-conservative” solutions in order to minimize bone resection/loss and maximize tissue-implant integration. Hence, the researchers׳ attention moved from “traditional” fixation of the prosthesis to host bone by using screws or acrylic cement to new strategies based on physico-chemical bonding and surface modification of the implant. This research work explores the feasibility of a novel bioceramic monoblock acetabular cup for hip joint prosthesis that can be fixed to the patient׳s bone by means of a bone-like trabecular coating able to promote implant osteointegration. Sponge replica method was properly adapted and optimized to produce hemispherical foam-like bioactive glass-ceramic coatings that were joined to Al2O3/ZrO2 composite cups by the interposition of a glass-ceramic interlayer. Morphological analyses by scanning electron microscopy (SEM) and micro-computed tomography revealed the good quality of joining at the different interfaces. Preliminary investigation of the mechanical properties was carried out to evaluate the suitability of the device for biomedical use. In vitro bioactive behaviour was assessed by immersion studies in simulated body fluid and evaluating the apatite formation on the struts of the trabecular coating. The concepts and findings reported in the present work can have a significant impact in the field of implantable devices, suggesting a valuable alternative to currently-applied but often suboptimal techniques for bone-prosthesis fixation.  相似文献   

18.
The nanostructured diamond-like carbon/hydroxyapatite composite coating (DLC/HA) was deposited using magnetron sputtering technique with a densely packed columnar cross-sectional structure and a uniform granular surface morphology. After heat treatment, the amorphous structure of the coating was transformed into a crystal structure. Nanohardness and scratch tests results demonstrated the DLC transition layer significantly enhanced the nanohardness of Ti6Al4V substrates from 4.8 GPa to 10.4 GPa, and increased critical load from 16.6 N (pure HA layer) to 26.5 N (DLC layer) without obvious brittle fracture, flaking and delamination. Electrochemical and immersion tests results demonstrated that DLC/HA composite coatings with a dense gradient transition interlayer had better corrosion resistance and could prevent harmful metal ions being released into the SBF solution more effectively than single HA coatings. Furthermore, active Ca2+ ions can be rapidly released from the coating surface during initial immersion in the SBF solution, and facilitated the formation of bone-like apatite.  相似文献   

19.
《Ceramics International》2020,46(6):7687-7693
In order to improve the corrosion resistance and bioactivity of biodegradable Mg alloy substrate, novel Zn-HA/Zn double-layer coatings with different HA/Zn ratios in weight were deposited on AZ91D substrates by cold spraying. Phase compositions and microstructures of as-sprayed coatings and coatings after corrosion tests were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Electrochemical corrosion behaviors of both Zn-HA/Zn double-layer coatings were investigated in Hanks’ simulated body fluid using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Results showed that both the pure Zn coating and HA/Zn composite coatings presented the similar phase compositions with their primary powders in addition to Zn oxidizations. Zn powders were plastically deformed and partially oxidized due to its low melting point, while HA powders were mainly crashed into fragments and hill-like splats. Both Zn under layer and HA/Zn upper layer were well bonded and presented dense structures, differences in HA/Zn upper layers were related to the HA/Zn ratios. Potentiodynamic polarization and EIS measurements illustrated that the cold-sprayed Zn-HA/Zn double-layer coatings not only improve the corrosion resistance of Mg alloy substrates, but also enhance its bioactivity due to the HA existed in composite upper layer.  相似文献   

20.
The objective of this study was to fabricate porous hydroxyapatite (HA) scaffolds coated with bioactive A/W glass–ceramics and to examine their mechanical and biological properties. Firstly, the HA scaffolds were prepared by the polymeric sponge replication method, and then A/W glasses were coated on the surface of the struts. All of the scaffolds had a highly porous structure with well-interconnected pores. It was observed that the bioactive glass coating markedly increased the strength of the HA scaffolds. This enhancement was attributed to the formation of a dense and strong coating layer on the weak HA struts. The in vitro bioactivities of the scaffolds were markedly improved by the coatings. When the coated scaffolds were soaked in a simulated body fluid (SBF), the bone-like apatite crystals were well mineralized on their surfaces. Osteoblast-like cells (MC3T3) adhered, spread, and grew well on the porous scaffolds. The cells placed on the glass-coated HA scaffold showed a higher proliferation rate and alkaline phosphatase (ALP) activity than those on the pure HA scaffold. These results demonstrate that the bioactive glass coating is effective in improving the strength and bioactivity of the porous HA scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号