首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel monomer called 1,1′‐ferrocenediacyl anilide (FcA) was synthesized from ferrocene (Fc). Copolymerization was carried out between FcA and aniline (ANI) by an electrochemical method. The novel monomer and copolymer were characterized with 1H‐NMR, Fourier transform infrared (FTIR) spectroscopy, and ultraviolet–visible (UV–vis) spectroscopy. The hydrogen protons of the benzene ring were moved to a low field in 1H‐NMR, and the absorption band of N?Q?N (where Q is the quinoid ring) appeared in the FTIR spectrum of the polymer. The peaks of both Fc and the π–π* electronic transition in the UV–vis spectra were redshifted. The results indicate that the copolymer mainly existed as a highly delocalized conjugated system. X‐ray diffraction analysis established further proof, and the process of electrochemical deposition was observed by scanning electron microscopy. The optimal synthesis conditions of the copolymer were determined through changes in the monomer molar ratios and the scan rate. The ideal performance of the copolymer was gained when the monomer molar ratio between FcA and ANI was 1:4 and the scan rate was 50 mV/s. Furthermore, the electrochemical performances were tested in detail by cyclic voltammetry, galvanostatic charge–discharge testing, and electrochemical impedance spectroscopy. The results show that the specific capacitance of poly(1,1′‐ferrocenediacyl anilide‐co‐aniline) increased up to 433.1 F/g at 0.5 A/g, the diffusion resistance was very small, and the durability was good enough. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43217.  相似文献   

2.
Polyphenylene (PP) with NH2 side groups, namely, PFluNH 2 , was synthesized by the Pd‐catalyzed reaction of 2,5‐dibromoaniline with 9,9‐dihexylfluorene‐2,7‐diboronic acid bis(1,3‐propanediol) ester. The reaction of PFluNH 2 with 1‐hexyl‐1′‐(2,4‐dinitrophenyl)‐4,4′‐bipyridinium diiodide ( SaltBPy(I?) ) eliminated 2,4‐dinitroaniline to yield PPs with viologen (1,1′‐disubstituted 4,4′‐bipyridinium dications), PFluBPy(I?) . The reaction of PFluBPy(I?) with Li+TCNQ ? resulted in anion exchange between Cl ? and TCNQ ? , and yielded PFluBPy(TCNQ?) . The reaction of PFluBPy(TCNQ?) with the neutral TCNQ0 resulted in an interaction between TCNQ ? and TCNQ0, and yielded PFluBPy(TCNQ?‐TCNQ0) . Cyclic voltammetry measurements suggested that an electrochemical reduction of the viologen moiety and oxidation of the polymer backbone within PFluBPy(TCNQ?) and PFluBPy(TCNQ?‐TCNQ0) . Furthermore, this reaction was accompanied by electrochromism. The electric conductivities (σ) of the pellets molded from PFluBPy(TCNQ?) to PFluBPy(TCNQ?‐TCNQ0) were 2.7 × 10 ? 4 and 4.2 × 10 ? 4 Scm ? 1, respectively; these σ values were higher than that observed for PFluNH 2 (σ < 10 ? 8 Scm ? 1) due to the self‐doping in the polymers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
For the first time, synthesis and characterization of a nanostructured star‐shaped polythiophene (PTh) with tannic acid core by both chemical and electrochemical oxidation polymerization methods through a “core‐first” method is reported. The chemical structures of all samples as representatives were characterized by means of Fourier transform infrared (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopies. The electroactivity behaviors of the synthesized samples were verified under cyclic voltammetric conditions, and their conductivities were determined using the four‐probe technique. The synthesized star‐shaped PTh showed higher electrical conductivity and electroactivity than those of the PTh in both chemical and electrochemical polymerized samples, due to its large surface area, spherical, and three‐dimensional structure. Moreover, the thermal behaviors, optical properties, and morphologies of the synthesized samples were investigated by means of thermogravimetric analysis (TGA), ultraviolet–visible (UV–Vis) spectroscopy, and field emission scanning electron microscopy (FE‐SEM), respectively. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43513.  相似文献   

4.
A soluble n‐type π‐conjugated polymer ( polymer 1 ) composed of a 1,2,4‐triazole ring substituted by a 4‐n‐octylphenyl subunit at the 4‐position of the 1,2,4‐triazole ring and pyridine‐2,5‐diyl rings was synthesized by Ni(cod)2 (cod = 1,5‐cyclooctadiene) promoted dehalogenation polycondensation of 3,5‐bis(2‐bromopyridyl)‐4‐n‐octylphenyl‐1,2,4‐triazole ( monomer 1 ). A polymer complex ( polymer‐BiCl3 ) was synthesized by the reaction of polymer 1 with BiCl3. The UV–vis spectrum of polymer 1 exhibited an absorption maximum (λmax value) at a longer wavelength than that exhibited by monomer 1 revealing that its π‐conjugation system was expanded along the polymer chain. Polymer 1 was electrochemically active in film, and the electrochemical reaction was accompanied with electrochromism. Thermoelectoric properties of polymer 1 and polymer‐BiCl3 were investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39928.  相似文献   

5.
High‐quality poly(9,10‐dihydrophenanthrene) (PPh) with good fluorescence properties was synthesized electrochemically by the direct anodic oxidation of 9,10‐dihydrophenanthrene in boron trifluoride diethyl etherate (BFEE). PPh films obtained from BFEE‐based electrolytes showed good electrochemical behavior and good thermal stability with an electrical conductivity of 2.2 × 10?3 S/cm; this indicated that BFEE was a better medium for the electrosyntheses of PPh films. Dedoped PPh films were soluble in CH2Cl2, dimethylformamide, and dimethyl sulfoxide. The structure and morphology of the polymer were also characterized by ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, 1H‐NMR spectroscopy, and scanning electron microscopy, respectively, which indicated the polymerization mainly occurred at the C(2) and C(7) positions. Fluorescent spectral studies indicated that PPh was a good blue‐light emitter. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The effect of the electropolymerization of seven poly(3‐methylthiophene) (P3MT) films in the same used monomer solution have been investigated. Cyclic voltammetry, UV‐visible, scanning electron microscopy, and electrochemical impedance measurements were carried out to understand the effect of the solution reusing on the polymer electrochemical properties. The obtained results show that, as the solution is reused, the polymerization rate increase and the charge in of the cyclic voltammetry decrease. Besides, there are important changes in the sample's morphologies, with the increase of the synthesis number, the amount of fibers increase and this leads to lower the conductivity of the polymer film. In agreement to this, the impedance data analysis shown important changes in the interfacial electronic parameters, i.e., changer transfer resistance and double‐layer capacitance, used to describe the films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44368.  相似文献   

7.
The dibenzyl derivative of poly(3,4‐propylenedioxythiophene) (PProDOT‐Bz2) thin film is deposited onto ITO‐coated glass substrate by electropolymerization technique. The electropolymerization of ProDOT‐Bz2 is carried out by a three‐electrode electrochemical cell. The cyclic voltammogram shows the redox properties of electrochemically prepared films deposited at different scan rates. The thin films prepared were characterized for its morphological properties to study the homogeniety. Classic six‐layer structure of PProDOT‐Bz2 electrochromic device using this material was fabricated and reported for the first and its characterizations such as spectroelectrochemical, switching kinetics, and chronoamperometric studies are performed. The color contrast of the thin film and the device achieved are 64 and 40%, respectively, at λmax (628 nm). The switching time is recorded and the observed values are 5 s from the coloring state to the bleaching state and vice versa. The chronoamperometry shows that the device performed up to 400 cycles, and it is capable of working up to 35 cycles without any degradation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40717.  相似文献   

8.
New π‐conjugated polymers containing dithieno(3,2‐b:2′,3′‐d)pyrrole (DTP) were successfully synthesized via electropolymerization. The effect of structural differences on the electrochemical and optoelectronic properties of the 4‐[4H‐dithieno(3,2‐b:2′,3′‐d)pyrrol‐4‐yl]aniline (DTP–aryl–NH2), 10‐[4H‐dithiyeno(3,2‐b:2′,3′‐d)pirol‐4‐il]dekan‐1‐amine (DTP–alkyl–NH2), and 1,10‐bis[4H‐dithieno(3,2‐b:2′,3′‐d)pyrrol‐4‐yl] decane (DTP–alkyl–DTP) were investigated. The corresponding polymers were characterized by cyclic voltammetry, NMR (1H‐NMR and 13C‐NMR), and ultraviolet–visible spectroscopy. Changes in the electronic nature of the functional groups led to variations in the electrochemical properties of the π‐conjugated systems. The electroactive polymer films revealed redox couples and exhibited electrochromic behavior. The replacement of the DTP–alkyl–DTP unit with DTP–aryl–NH2 and DTP–alkyl–NH2 resulted in a lower oxidation potential. Both the poly(10‐(4H‐Dithiyeno[3,2‐b:2′,3′‐d]pirol‐4‐il)dekan‐1‐amin) (poly(DTP–alkyl–NH2)) and poly(1,10‐bis(4H‐dithieno[3,2‐b:2′,3′‐d]pyrrol‐4‐yl) decane) (poly(DTP–alkyl–DTP)) films showed multicolor electrochromism and also fast switching times (<1 s) in the visible and near infrared regions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40701.  相似文献   

9.
Synthesis of a polyfluorene/poly(p‐phenylene vinylene) derivative, the Poly [(9,9′‐di‐hexylfluorenediylvinylene‐alt‐1,4‐phenylenevinylene)‐co‐((9,9′‐(3‐t‐butylpropanoate) fluorene‐1,4‐phenylene)] (LaPPS 42) was performed following Wittig and Suzuki routes. Polyfluorenes and derivatives have been used in electroluminescent devices, and the synthesis described here has the advantage in pave the way to get distinct structures having different emission spectra. An extensive study of its electrochemical, thermomechanical, optical, and structural properties was carried out, as well as its application in electroluminescent devices. Polymer light‐emitting diodes (PLEDs) and polymer light‐emitting electrochemical cells (PLECs) were built using LaPPS 42 as active layer, and their electric and optical characterizations confirm they have a potential as active element in electroluminescent devices. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42579.  相似文献   

10.
Oligo(1,5‐dialkoxynaphthalene‐2,6‐diyl)s were synthesized by Ni(cod)2 (cod = 1,5‐cyclooctadiene)‐promoted condensation reactions of 1,5‐dialkoxy‐2,6‐dibromonaphthalenes. The UV–Vis, photoluminescence (PL), and powder X‐ray diffraction (XRD) measurements suggested that the oligomers have a self‐assembling ordered structure in the solid state. The oligomers underwent electrochemical oxidation (p‐doping), which occurred at lower potentials for films than for acetonitrile solutions containing [Et4N]BF4. This effect is caused by the longer π‐conjugation lengths of the oligomers in films, which was attributed to molecular self‐assembly leading to ordered structures in the solid state. The electrochemical reaction of the oligomers was accompanied by electrochromism. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41840.  相似文献   

11.
A new interesting class of conducting polymer and copolymers based on 4‐teriary butyl‐cyclohexanone in the main chain has been synthesized by solution polycodensation of terephthalaldehyde with 4‐teriary butyl‐cyclohexanone and/or cycloalkanone derivatives. The model compound I was synthesized from the 4‐teriary butyl‐cyclohexanone with benzaldehyde, and its structure was confirmed by elemental and spectral analyses. The resulting polymer and copolymers were characterized by elemental and spectral analyses including Fourier transform infrared spectrometer (FT‐IR) and nuclear magnetic resonance (1H‐NMR), beside solubility and viscometry measurements. The thermal properties of those polymer and copolymers were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) measurements and correlated to their structural units. X‐ray analysis showed that it has some degree of crystallinity in the region 2θ = 5–60°. The UV–visible spectra of some selected polymers were measured in dimethyl sulfoxide (DMSO) solution and showed absorption bands in the range 253–398 nm, due to n–π* and π–π* transition. The morphological properties of selected examples were tested by scanning electron microscope (SEM). Moreover, the electrical conductivities and the doping with iodine were tested. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
The synthesis, characterization, photophysical and photovoltaic properties of two 5,6‐bis(octyloxy)benzo[c][1,2,5]thiadiazole‐containing wide‐band‐gap donor and acceptor D‐π‐A alternating conjugated polymers (HSD‐a and HSD‐b) have been reported. These two polymers absorb in the range of 300–700 nm with a band gap of about 1.88 and 1.97 eV. The HOMO energy levels were ?5.44 eV for HSD‐a and ?5.63 eV for HSD‐b. Polymer solar cells with HSD‐b :PC71BM as the active layer demonstrated a power conversion efficiency (PCE) of 2.59% with a high Voc of 0.93 V, a Jsc of 7.3 mA/cm2, and a comparable fill factor (FF) of 0.38 under simulated solar illumination of AM 1.5G (100 mW/cm2) without annealing. In addition, HSD‐a :PC71BM blend‐based solar cells exhibit a PCE of 2.15% with a comparable Voc of 0.64 V, Jsc of 8.75 mA/cm?2, and FF of 0.40. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41587.  相似文献   

13.
Solid polymer membranes from poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐acrylic acid) (PAA) with varying doping ratios of sorbitol were prepared using the solution casting method. The films were examined with Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and AC impedance spectroscopy. The impedance measurements showed that the ionic conductivity of PVA–PAA polymer membrane can be controlled by controlled doping of sorbitol within the polymer blends. The PVA–PAA–sorbitol membranes were found to exhibit excellent thermal properties and were stable for a wide temperature range (398–563K), which creates a possibility of using them as suitable polymers for device applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
The influence of inorganic and organic supporting electrolytes on the electrochemical, optical, and conducting properties of poly(o‐anisidine), poly(o‐toluidine), and poly(o‐anisidine‐coo‐toluidine) thin films was investigated. Homopolymer and copolymer thin films were synthesized electrochemically, under cyclic voltammetry conditions, in aqueous solutions of inorganic acids (H2SO4, HCl, HNO3, H3PO4, and HClO4) and organic acids (benzoic acid, cinnamic acid, oxalic acid, malonic acid, succinic acid, and adipic acid) at room temperature. The films were characterized by cyclic voltammetry, ultraviolet–visible spectroscopy, and conductivity measurements with a four‐probe technique. The ultraviolet–visible spectra were obtained ex situ in dimethyl sulfoxide. The optical absorption spectra indicated that the formation of the conducting emeraldine salt (ES) phase took place in all the inorganic electrolytes used, whereas in organic acid supporting electrolytes, ES formed only with oxalic acid. Moreover, the current density and conductivity of the thin films was greatly affected by the nature and size of the anion present in the electrolyte. For the copolymer, the conductivity lay between the conductivity of the homopolymers, regardless of the supporting electrolyte used. The formation of the copolymer was also confirmed with differential scanning colorimetry. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2634–2642, 2003  相似文献   

15.
Novel single‐ion‐conductor polymer (SCP) electrolytes based on oxalate‐chelated‐borate‐structure‐grafted poly(vinyl formal) (PVFM) were synthesized via a solution casting technique. The influence of the molar ratio of ? OH and boron atoms in PVFM on the ionic conductivity (σ) of the SCP electrolytes at different temperatures was investigated with alternating‐current impedance spectroscopy in the frequency range of 0.01 Hz to 1 MHz. The results show that σ of the SCP electrolytes at 15–60 °C was about 10?6–10?5 S/cm, and temperature dependence of the conductivity of the electrolytes followed the Vogel–Tamman–Fulcher relationship. The dielectric behaviors of the SCP electrolytes were analyzed in view of the dielectric permittivity and dielectric modulus of the electrolytes. Dielectric analysis revealed that the transport of Li+ ions in the PVFM‐based SCP electrolytes mainly followed a hopping mechanism coupled with the segmental motion of the polymer chain. Additionally, a dielectric relaxation was found in the high‐frequency region; this was a thermally activated result and also implied the appearance of carrier hopping. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43510.  相似文献   

16.
A series of five new conjugated polythiophene (PT) derivatives containing piperidinyl groups as a side chain were synthesized by ferric trichloride oxidization. All of the polymers were soluble in common organic solvents, and their high regioregularity were confirmed by 1H‐NMR. The weight‐average molar masses ranged from 5931 to 22,955 g/mol with a low polydispersity index ranging from 1.18 to 1.79. The fluorescence emission maximum of poly[3‐(N‐methyl propionate–4′‐piperidine)methylene–thiophene] in the films was 725 nm in the yellow–red region, higher than that of the other PT derivatives. All five polymers exhibited reversible p‐doping/dedoping (oxidation/reneutralization) processes; this indicated that these polymers could be applied in electrical equipment in the doping state. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
High‐conversion (HC) copolymers of aniline and o‐methoxyaniline (o‐anizidine) were synthesized for the first time by chemical oxidative copolymerization by using various polymerization techniques (simultaneous or consecutive introduction of comonomers into the polymerizing system). Low‐conversion (LC) copolymers have also been synthesized for comparison. The polymers obtained were characterized by using 1H‐NMR, infrared, and electronic absorption spectroscopy; differential scanning calorimetry; and electrical conductivity measurements. Solubility characteristics and composition of different fractions of the copolymers were also determined. It was shown that, in contrast to the LC copolymers, HC copolymers reveal relatively poor solubility. Electrical conductivity of copolymers and also of o‐methoxyaniline homopolymer is lower as compared to polyaniline, which correlates with notable hypsochromic (blue) shift of the bands in electronic absorption spectra. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1822–1828, 2005  相似文献   

18.
High‐conversion (HC) copolymers of aniline and o‐methoxyaniline (o‐anizidine) were synthesized for the first time by chemical oxidative copolymerization using various polymerization techniques (simultaneous or consecutive introduction of comonomers into the polymerizing system). Low‐conversion (LC) copolymers have also been synthesized for comparison. The polymers obtained were characterized using 1H‐NMR, infrared, and electronic absorption spectroscopy, differential scanning calorimetry, and electrical conductivity measurements. Solubility characteristics and composition of different fractions of the copolymers were also determined. It was shown that in contrast to the LC copolymers, HC copolymers reveal relatively poor solubility. Electrical conductivity of copolymers and also of o‐methoxyaniline homopolymer is lower compared to polyaniline, which correlates with notable hypsochromic (blue) shift of the bands in electronic absorption spectra. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 75–81, 2006  相似文献   

19.
Methylene blue (MB) redox mediator was introduced into polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) blend host to prepare a gel polymer electrolyte (PVA‐PVP‐H2SO4‐MB) for a quasi‐solid‐state supercapacitor. The electrochemical properties of the supercapacitor with the prepared gel polymer electrolyte were evaluated by cyclic voltammetry, galvanostatic charge–discharge, electrochemical impedance spectroscopy, and self‐discharge measurements. With the addition of MB mediator, the ionic conductivity of gel polymer electrolyte increased by 56% up to 36.3 mS·cm?1, and the series resistance reduced, because of the more efficient ionic conduction and higher charge transfer rate, respectively. The electrode specific capacitance of the supercapacitor with PVA‐PVP‐H2SO4‐MB electrolyte is 328 F·g?1, increasing by 164% compared to that of MB‐undoped system at the same current density of 1 A·g?1. Meanwhile, the energy density of the supercapacitor increases from 3.2 to 10.3 Wh·kg?1. The quasi‐solid‐state supercapacitor showed excellent cyclability over 2000 charge/discharge cycles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39784.  相似文献   

20.
Poly(2‐iodoaniline) (PIANI) and poly(aniline‐co‐2‐iodoaniline) [P(An‐co‐2‐IAn)] were synthesized by electrochemical methods in acetonitrile solution containing tetrabutylammonium perchlorate (TBAP) and perchloric acid (HClO4). The voltametry of the copolymer shows characteristics similar to those of conventional polyaniline (PANI), and it exhibits higher dry electrical conductivity than PIANI and lower than PANI. The observed decrease in the conductivity of the copolymer relative to PANI is attributed to the incorporation of the iodine moieties into the PANI chain. The structure and properties of these conducting films were characterized by FTIR and UV‐Vis spectroscopy and by an electrochemical method (cyclic voltametry). Conductivity values, FTIR and UV‐Vis spectra of the PIANI and copolymer were compared with those of PANI and the relative solubility of the PIANI and the copolymer powders was determined in various organic solvents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1652–1658, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号