首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A novel linear low‐density polyethylene (LLDPE)/polypropylene (PP) thermostimulative shape memory blends were prepared by melt blending with moderate crosslinked LLDPE/PP blend (LLDPE–PP) as compatibilizer. In this shape memory polymer (SMP) blends, dispersed PP acted as fixed phase whereas continuous LLDPE phase acted as reversible or switch phase. LLDPE–PP improved the compatibility of LLDPE/PP blends as shown in scanning electron microscopic photos. Dynamic mechanical analysis test showed that the melt strengths of the blends were enhanced with increasing LLDPE–PP content. A shape memory mechanism for this type of SMP system was then concluded. It was found that when the blend ratio of LLDPE/PP/LLDPE–PP was 87/13/6, the blend exhibited the best shape memory effect at stretch ratio of 80%, stretch rate of 25 mm/min, and recovery temperature of 135°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

2.
A thermosetting styrene‐based shape memory polymer (SMP) filled with nanoscale (30 nm) carbon black are prepared to reinforce the thermomechanical performances and realize the high‐efficient electronic actuation at macro scale due to the carbon–carbon network morphology at nano/micro scale. The elastic modulus of this thermosetting SMP composite is significant strengthened and can maintain at 1–2.5 GPa at around the room temperature, which is suitable for used as a structural material. The electronic resistivity decreases sharply at a quite low percolation threshold range (2–5%), and maintains at a relatively low and stable level of electronic resistivity. Furthermore, the electronic resistivity also exhibits relative stability in terms of the resistivity–temperature–time relationship and the evolution of resistivity upon heating–cooling cycles. This shape memory styrene‐based composite is suitable to be used as an electroactive functional material in realistic engineering. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45978.  相似文献   

3.
Compatibilizing effects of styrene/rubber block copolymers poly(styrene‐b‐butadiene‐b‐styrene) (SBS), poly(styrene‐b‐ethylene‐co‐propylene) (SEP), and two types of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS), which differ in their molecular weights on morphology and selected mechanical properties of immiscible polypropylene/polystyrene (PP/PS) 70/30 blend were investigated. Three different concentrations of styrene/rubber block copolymers were used (2.5, 5, and 10 wt %). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the phase morphology of blends. The SEM analysis revealed that the size of the dispersed particles decreases as the content of the compatibilizer increases. Reduction of the dispersed particles sizes of blends compatibilized with SEP, SBS, and low‐molecular weight SEBS agrees well with the theoretical predictions based on interaction energy densities determined by the binary interaction model of Paul and Barlow. The SEM analysis confirmed improved interfacial adhesion between matrix and dispersed phase. The TEM micrographs showed that SBS, SEP, and low‐molecular weight SEBS enveloped and joined pure PS particles into complex dispersed aggregates. Bimodal particle size distribution was observed in the case of SEP and low‐molecular weight SEBS addition. Notched impact strength (ak), elongation at yield (εy), and Young's modulus (E) were measured as a function of weight percent of different types of styrene/rubber block copolymers. The ak and εy were improved whereas E gradually decreased with increasing amount of the compatibilizer. The ak was improved significantly by the addition of SEP. It was found that the compatibilizing efficiency of block copolymer used is strongly dependent on the chemical structure of rubber block, molecular weight of block copolymer molecule, and its concentration. The SEP diblock copolymer proved to be a superior compatibilizer over SBS and SEBS triblock copolymers. Low‐molecular weight SEBS appeared to be a more efficient compatibilizer in PP/PS blend than high‐molecular weight SEBS. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 291–307, 1999  相似文献   

4.
This study presents two effective approaches to significantly improve the electro‐thermal properties and electro‐activated shape recovery performance of shape memory polymer (SMP) nanocomposites that are incorporated with carbon nanofibers (CNFs) and hexagonal boron nitrides (h‐BNs), and show Joule heating triggered shape recovery. CNFs were self‐assembled and deposited into buckypaper form to significantly improve the electrical properties of SMP and achieve the shape memory effect induced by electricity. The h‐BNs were either blended into or self‐assembled onto CNF buckypaper to significantly improve the thermally conductive properties and electro‐thermal performance of SMPs. Furthermore, the shape recovery behavior and temperature profile during the electrical actuation of the SMP nanocomposites were monitored and characterized. It was found that a unique synergistic effect of CNFs and h‐BNs was presented to facilitate the heat transfer and accelerate the electro‐activated shape recovery behavior of the SMP nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40506.  相似文献   

5.
In addition to the fabrication of thermoset epoxy–anhydride shape‐memory polymers (SMPs), a systematic experimental investigation was conducted to characterize the crosslinking density, micromorphology, thermal properties, mechanical properties, and shape‐memory effects in the epoxy SMP system, with a focus on the influence of the crosslinking density and programming temperature on the shape‐fixity and shape‐recovery behaviors of the polymers. On the basis of the crosslinking density information determined by NMR technology, we concluded that the effect of the crosslinking density on the shape‐fixity behaviors was dependent on the programming temperature. The advantage of a nice combination of crosslinking density and programming temperature provided an effective approach to tailor the actual shape recovery within a wide range. The increasing crosslinking density significantly improved the shape‐recovery ratio, which could be further improved through a decrease in the programming, whereas the crosslinking density was more fundamental. This exploration should play an important role in the fabrication and applications of SMP materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40559.  相似文献   

6.
Polypropylene (PP) and poly(styrene‐b‐butadiene‐b‐styrene) block copolymer (SBS) were melt‐blended in the presence of initiator system. Dicumyl peroxide (DCP)/Triallyl isocyanurate (TAIC) via self‐deigned VE, aiming at in situ reactive compatibilization of toughed PP/SBS blend. The reactivity, morphology and mechanical properties of PP/SBS/DCP/TAIC blends were studied. Online torque detection was conducted to monitor changes in viscosities of reactive compatibilized blends, which could give proof of the interfacial grafted reaction induced by DCP/TAIC system. The effect of reactive compatibilization on the dispersed particles sizes and interfacial adhesion was studied by scanning electron microscopy. Analysis on mechanical performance revealed the impact strength improved after treated by initiator system, moreover, the impact‐fractured surface observation showed, the failure mode changed from debonding mechanism of neat 50PP/50SBS blend to plastic deformation mechanism of blend containing 3.0 phr initiator system. With improved interfacial adhesion, compatibilized blends not only were toughened but also exhibited enhanced tensile strength and thermal stability. Dynamic mechanical analysis showed a reduction of between PP phase and the PB segments in SBS phase, indicating reactive compatibilization of the blend was achieved. In the final part, a brief discussion was given about the dominant effects from chain scission of PP matrix to intergrafting reactions of PP and SBS, under different content of DCP/TAIC initiator system. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41543.  相似文献   

7.
Three microparticle additives, tungsten (W), zirconium oxide (ZrO2) , and barium sulfate (BaSO4) were selected to enhance the radio‐opacity in shape memory polymer (SMP) foam biomaterials. The addition of filler causes no significant alterations of glass transition temperatures, density of the materials increases, pore diameter decreases, and total volume recovery decreases from approximately 70 times in unfilled foams to 20 times (4% W and 10% ZrO2). The addition of W increases time to recovery; ZrO2 causes little variation in time to shape recovery; BaSO4 increases the time to recovery. On a 2.00 mean X‐ray density (mean X.D.) scale, a GDC coil standard has a mean X.D. of 0.62 ; 4% W enhances the mean X.D. to 1.89, 10% ZrO2 to 1.39 and 4% BaSO4 to 0.74. Radio‐opacity enhancing additives could be used to produce SMP foams with controlled shape memory kinetics, low density , and enhanced X ‐ray opacity for medical materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42054.  相似文献   

8.
Shape‐memory polymer (SMP) materials have several drawbacks such as low strength, low stiffness and natural insulating tendencies, which seriously limit their development and applications. Much effort has been made to improve their mechanical properties by adding particle or fiber fillers to reinforce the polymer matrix. However, this often leads to the mechanical properties being enhanced slightly, but the shape‐memory effect of reinforced SMP composites being drastically reduced. The experimental results reported here suggested that the mechanical resistive loading and thermal conductivity of a composite (with hybrid filler content of 7.0 wt%) were improved by 160 and 200%, respectively, in comparison with those of pure bulk SMP. Also, the glass transition temperature of the composite was enhanced to 57.28 °C from the 46.38 °C of a composite filled with 5.5 wt% hybrid filler, as determined from differential scanning calorimetry measurements. Finally, the temperature distribution and recovery behavior of specimens were recorded with infrared video in a recovery test, where a 28 V direct current circuit was applied. The effectiveness of carbon black and short carbon fibers being incorporated into a SMP with shape recovery activated by electricity has been demonstrated. These hybrid fillers were explored to improve the mechanical and conductive properties of bulk SMP. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
This paper reports a simple route for the preparation of graphene/poly(styrene‐b‐butadiene‐b‐styrene) (SBS) nanocomposite films employing a vacuum filtration method. Graphene is exfoliated well by an electrochemical procedure and homogeneously dispersed in the polymer matrix. The prepared nanocomposite films were characterized by XRD, Fourier transform IR (FTIR) spectroscopy, X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, AFM and SEM. Morphological studies showed that graphene formed a smooth coating over the surface of SBS. The increase in graphene concentration induces the wrinkling of graphene sheets at the composite surface which causes a further increase in surface roughness. The FTIR, Raman and XPS spectra of graphene/SBS nanocomposite films indicate the strong interactions between graphene and the polymer matrix. According to the XRD patterns, introducing SBS into graphene did not modify the graphene structure additionally, i.e. the crystal lattice parameters do not depend on SBS content in graphene/SBS nanocomposite films. The graphene/SBS nanocomposite films also exhibited better hydrophobicity due to the increased surface roughness and lower sheet resistivity (reduced 10 times) compared to exfoliated graphene. © 2018 Society of Chemical Industry  相似文献   

10.
Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al2O3‐ or silica‐filled silicone membrane. It was observed that the silicone membranes, particularly the silica‐filled membrane, reduced the rate of water absorption (37°C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41226.  相似文献   

11.
A novel method of grafting styrene onto linear low‐density polyethylene (LLDPE) by suspension polymerization was systematically evaluated. Cyclohexane as a compatibilizer was introduced to swell and activate the surface of LLDPE molecular chain for amplifying the contact point of styrene monomer with LLDPE. A series of copolymer of grafting polystyrene (PS) onto LLDPE, known as LLDPE‐g‐PS, were prepared with different ratios of cyclohexane/styrene monomer and various LLDPE dosages. FTIR and 1H NMR techniques both confirmed successful PS grafting onto the LLDPE chains. In addition, SEM images of LLDPE‐g‐PS particles showed that the cross‐section morphology becomes smooth and dense with suitable cyclohexane dosages, indicating a better compatibility between LLDPE and PS. The highest grafting efficiency was 28.4% at 10 mL/g cyclohexane and styrene monomer when 8% LLDPE was added. In these conditions, the LLDPE‐g‐PS elongation at break increased by about 30 times compared with PS. Moreover, thermal gravimetric analysis (TGA) demonstrated that LLDPE‐g‐PS possesses much higher thermal stability than pure PS. Therefore, the optimal amount of cyclohexane as compatibilizer could increase the grafting efficiency and improve the toughness of PS. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41671.  相似文献   

12.
Conventionally, the chemically crosslinked shape memory polymer (SMP) blends are hard to recycle due to their network structure. Herein, the environmental SMP blends of olefin block copolymer (OBC), a unique thermoplastic elastomer, and poly(?‐caprolactone) (PCL) were physically crosslinked. Dicumyl peroxide was used as the compatibilizer to improve their miscibility, as evidenced by the reduced dispersed domain size of PCL in the OBC matrix and the increased complex viscosity. The peroxide modified OBC/PCL blend conferred enhanced tensile properties, increased dynamic storage modulus, increased crystallization temperature, and higher recovery stress. The shape memory behaviors of OBC/PCL blends predeformed under two different predeformation temperatures (30 and 65 °C) were investigated. The recovery stress showed respective maximum peak values corresponding to their predeformation temperatures. In addition, the modified blends gave the better shape memory performance at 65 °C. Besides the peroxide modification approach, a precycle training process via prestretching the samples and reducing the mechanical hysteresis was implemented to improve shape memory performance further. This is the first work on the OBC‐based SMP blends to enhance shape memory performance by combining the chemical modification using added peroxide compatibilizer and the process modification using a precycle training process. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45475.  相似文献   

13.
In the present study, the effect of grafted and ungrafted hydroxyapatite (HAp) filler on the mechanical properties of acrylate based shape memory polymer (SMP) composite is reported. HAp is grafted with polyethylene glycol methacrylate (PEGMA) monomer to avoid agglomeration and the same is embedded as reinforcement in tBA – PEGDMA matrix (70 wt% tBA: tert-butyl acrylate +30 wt% PEGDMA: polyethylene glycol dimethacrylate). The grafting process improved the interfacial interactions of the particles, dispersed in the polymer system and subsequently enhanced the mechanical properties of the shape memory polymer composites. The morphology of HAp particles is investigated by field emission scanning electron microscopy. The mechanical properties of SMP composites are evaluated at room temperature and above glass transition temperature (Tg) with grafted and ungrafted HAp particles. The addition of grafted HAp significantly improved the tensile strength (40%) and shape recovery rate (25%) of the SMP composite when compared to the SMP composite containing ungrafted HAp. SMP composite containing grafted HAp exhibited higher cell viability compared to the neat SMP and the SMP composite containing ungrafted HAp.  相似文献   

14.
The effect of electron beam (E‐beam) radiation on a series of styrenic block copolymers (SBCs) was investigated. These SBCs included newly developed poly(styrene‐block‐isoprene/butadiene‐block‐styrene) (SIBS), poly(styrene‐block‐butadiene‐block‐styrene) (SBS), and poly(styrene‐block‐isoprene‐block‐styrene) (SIS). The tensile properties, stress relaxation, molecular weight, and dynamical mechanical properties were studied. Generally, the crosslink density and tensile moduli of SBCs increased with increasing of E‐beam radiation dose. The tensile strength of SIBS and SIS was shown to first decrease at lower E‐beam radiation dose (<120 kGy) and then increase at higher radiation dose (>190 kGy). The tensile strength of SBS was significantly decreased at high E‐beam radiation dose (>190 kGy). This was attributed to the differences between entanglement before E‐beam radiation and the homogeneity of the crosslink network after exposure. POLYM. ENG. SCI., 54:2979–2988, 2014. © 2014 Society of Plastics Engineers  相似文献   

15.
During a cyclic tension test, many elastomeric materials exhibit an appreciable softening in their mechanical properties resulting from the previous stretch, known as the Mullins effect. This paper explores the influence of the stretch induced softening effect to the free recovery behavior of an acrylate shape memory polymer (SMP) composite by incorporating carbon black (CB) as filler materials. The observed softening effect in this SMP composite is considered to be a consequence of stretch induced alternation of filler–polymer interactions inside the composite. Further experiments find that a larger prior stretch gives a larger increase in material softening, which in turn decreases the shape recovery speed. To capture the experimental observations, a multi-branch one dimensional (1D) model is applied, where the modulus in the equilibrium branch is modeled to decrease with stretching deformation following a damage-like softening function. It is found that the loss in modulus due to softening consequently reduces the driving force for recovery and thus results in a slow recovery. Parametric studies further demonstrate that the discounted shape recovery speed will finally reach a saturated level when gradually increasing the programmed strain level in a shape memory cycle.  相似文献   

16.
Heng Zhang  Qiangguo Du 《Polymer》2009,50(6):1596-393
A novel styrene-butadiene-styrene tri-block copolymer (SBS) and poly(?-caprolactone) (PCL) blend were introduced for its shape memory properties. Compared to the reported shape memory polymers (SMPs), this novel elastomer and switch polymer blend not only simplified the fabrication process but also offer a controllable approach for the study of mechanisms and the optimization of shape memory performances. Microstructures of this blend were characterized by differential scanning calorimetry (DSC), AFM microscope observation and tensile test. DSC results demonstrated the immiscibility between SBS and PCL. AFM images and stress-strain plot further confirmed the two-phase morphology within the blend. It was found that the SBS and PCL continuous phases contributed to the shape recovery and shape fixing performances, respectively. A detailed shape memory mechanism for this type of SMP system was then concluded and an optimized SMP system with both good recovery and fixing performances was designed from this mechanism.  相似文献   

17.
Poor heat conduction in the interface between the carbon fiber and polymer matrix is a problem in the actuation of shape‐memory polymer (SMP) composites by Joule heating. In this study, we investigated the effectiveness of grafting silver‐nanoparticle‐decorated graphene oxide (GO) onto carbon fibers to improve the electrothermal properties and Joule‐heating‐activated shape recovery of SMP composites. Self‐assembled GO was grafted onto carbon fibers to enhance the bonding of the carbon fibers with the polymeric matrix via van der Waal's forces and covalent crosslinking, respectively. Silver nanoparticles were further self‐assembled and deposited to decorate the GO assembly, which was used to decrease the thermal dissimilarity and facilitate heat transfer from the carbon fiber to the polymer matrix. The carbon fiber was incorporated with SMP to achieve the shape recovery induced by Joule heating. We found that the silver‐nanoparticle‐decorated GO helped us achieve a more uniform temperature distribution in the SMP composites compared to those without decoration. Furthermore, the shape‐recovery behavior and temperature profile during the Joule heating of the SMP composites were characterized and compared. A unique synergistic effect of the carbon fibers and silver‐nanoparticle‐decorated GO was achieved to enhance the heat transfer and a higher speed of actuation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41673.  相似文献   

18.
With some polymerizable small molecules grafting onto the montmorillonite surface, we disposed the clay through in‐situ emulsion polymerization, and the structure of the modified montmorillonites were studied through Fourier transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD). The nanocomposites of poly(styrene‐b‐butadiene‐b‐styrene) (SBS)/montmorillonite with excellent mechanical properties were prepared by mixing SBS and the modified montmorillonite on the double rollers at 150°C. The exfoliation of the layered silicates was confirmed by XRD analysis and transmission electron microscopy (TEM) observation. After mechanical kneading of the molten nanocomposites, the exfoliation structure of the silicates is still stable for polystyrene macromolecules grafting onto the silicates. Upon the addition of the modified montmorillonite, the tensile strength, elongation at break and tear strength of the nanocomposites increased from 22.6 MPa to 31.1 MPa, from 608% to 948%, from 45.32 N/mm to 55.27 N/mm, respectively. The low‐temperature point of glass‐transition temperature (Tg) of the products was about −77°C, almost constant, but the high‐temperature point increased from 97°C to 106°C. In addition, the nanocomposites of SBS and modified montmorillonites showed good resistance to thermal oxidation and aging. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

19.
Polybutyl acrylate (PBA) was intercalated into clay by the method of multistep exchange reactions and diffusion polymerization. The clay interlayer surface is modified, and obtaining the modified clay. The structures of the clay‐PBA, clay‐GA (glutamic acid), and the clay‐DMSO (dimethyl sulfoxide) were characterized using X‐ray diffraction (XRD). The new hybrid nanocomposite thermoplastic elastomers were prepared by the clay‐PBA with poly(styrene‐b‐butadiene) block copolymer (SBS) through direct melt intercalation. The dynamic mechanical analysis (DMA) curves of the SBS/modified clay nanocomposites show that partial polystyrene segments of the SBS have intercalated into the modified clay interlayer and exhibited a new glass transition at about 157°C (Tg3). The glass transition temperature of polybutadiene segments (Tg1) and polystyrene segments out of the modified clay interlayer (Tg2) are about ?76 and 94°C, respectively, comparied with about ?79 and 100°C of the neat SBS, and they are basically unchanged. The Tg2 intensity of the SBS‐modified clay decreases with increasing the amounts of the modified clay, and the Tg3 intensity of the SBS‐modified clay decreases with increasing the amounts of the modified clay up to about 8.0 wt %. When the contents of the modified clay are less than about 8.0 wt %, the SBS‐modified clay nanocomposites are homogeneous and transparent. The Tgb and Tgs of the SBS‐clay (mass ratio = 98.0/2.0) are ?78.39 and 98.29°C, respectively. This result shows that the unmodified clay does not essentially affect the Tgb and Tgs of the SBS, and no interactions occur between the SBS and the unmodified clay. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1499–1503, 2002; DOI 10.1002/app.10353  相似文献   

20.
In this study, electrospun nanofibers of poly (vinyl alcohol) (PVA) and styrene–butadiene–styrene triblock copolymer (SBS) were employed in conventional water‐swellable rubber (WSR) to design WSR composites with improved water swelling and mechanical properties. With the introduction of PVA nanofibers, considerable improvement in elasticity, strength, and water‐swelling behavior was observed. After immersion, PVA nanofibers dissolved within the composite to in situ form water channels to connect isolated super‐absorbent polymers (SAPs). Those water channels led to an increase in water uptake by the WSR composite. Furthermore, the secondary water‐swelling behaviors of the WSR composite showed a remarkable increase in swelling rate as well as in mechanical properties. The addition of SBS nanofibers had a marked impact on the mechanical properties of the WSR composite. Their roles became more pronounced after water immersion. The proposed enhancement mechanism is also discussed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44548.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号