首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABA‐type block copolymers containing segments of poly(dimethyl siloxane) and poly(vinyl pyrrolidinone) were synthesized. Dihydroxyl‐terminated poly(dimethyl siloxane) was reacted with isophorone diisocyanate and then with t‐butyl hydroperoxide to obtain macroinitiators having siloxane units. The peroxidic diradical macroinitiators were used to polymerize vinyl pyrrolidinone monomer to synthesize ABA‐type block copolymers. By use of physicochemical methods, the structure was confirmed, and its characterization was accomplished. Mechanical and thermal characterizations of copolymers were made by stress–strain tests and differential scanning calorimetric measurements. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1915–1922, 1999  相似文献   

2.
A comparison of the thermal properties of two classes of poly(D,L ‐lactic‐glycolic acid) multiblock copolymers is reported. In particular, the results of differential scanning calorimetry, and thermogravimetric analysis of copolymers containing poly(ethylene glycol) (PEG) or diol‐terminated poly(ϵ‐caprolactone) (PCDT) segments are described. The influence of the chemical structure and the length of PEG and PCDT on thermal stability, degree of crystallinity and glass transition temperature (Tg ) is discussed. Finally, an evaluation of the hydrolytic behavior in conditions mimicking the physiological environment is reported. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1721–1728, 2000  相似文献   

3.
Two series of thermoplastic poly(ester–siloxane)s, based on poly(dimethylsiloxane) (PDMS) as the soft segment and poly(butylene terephthalate) as the hard segment, were synthesized by two‐step catalyzed transesterification reactions in the melt. Incorporation of soft poly(dimethylsiloxane) segments into the copolyester backbone was accomplished in two different ways. The first series was prepared based on dimethyl terephthalate, 1,4‐butanediol and silanol‐terminated poly(dimethylsiloxane) (PDMS‐OH). For the second series, the PDMS‐OH was replaced by methyl diesters of carboxypropyl‐terminated poly(dimethylsiloxane)s. The syntheses were optimized in terms of both the concentration of catalyst, tetra‐n‐butyl‐titanate (Ti(OBu)4), and stabilizer, N,N′‐diphenyl‐p‐phenylene‐diamine, as well as the reaction time. The reactions were followed by measuring the inherent viscosities of the reaction mixture. The molecular structures of the synthesized poly(ester–siloxane)s were verified by 1H NMR spectroscopy, while their thermal properties were investigated using differential scanning calorimetry. © 2001 Society of Chemical Industry  相似文献   

4.
A series of aliphatic biodegradable poly (butylene succinate‐co‐ethyleneoxide‐co‐DL ‐lactide) copolyesters were synthesized by the polycondensation in the presence of dimethyl succinate, 1,4‐butanediol, poly(ethylene glycol), and DL ‐oligo(lactic acid) (OLA). The composition, as well as the sequential structure of the copolyesters, was carefully investigated by 1H‐NMR. The crystallization behaviors, crystal structure, and spherulite morphology of the copolyesters were analyzed by differential scanning calorimetry, wide angle X‐ray diffraction, and polarizing optical microscopy, respectively. The results indicate that the sequence length of butylene succinate (BS) decreased as the OLA feed molar ratio increasing. The crystallization behavior of the copolyesters was influenced by the composition and sequence length of BS, which further tuned the mechanical properties of the copolyesters. The copolyesters formed the crystal structures and spherulites similar to those of PBS. The incorporation of more content of ethylene oxide (EO) units into the copolyesters led to the enhanced hydrophilicity. The more content of lactide units in the copolyesters facilitated the degradation in the presence of enzymes. The morphology of the copolyester films after degradation was also studied by the scanning electron microscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
The objective of this study was to prepare high molecular weight poly(ester‐anhydride)s by melt polycondensation. The polymerization procedure consisted of the preparation of carboxylic acid terminated poly(?‐caprolactone) prepolymers that were melt polymerized to poly(?‐caprolactone)s containing anhydride functions along the polymer backbone. Poly(?‐caprolactone) prepolymers were prepared using either 1,4‐butanediol or 4‐(hydroxymethyl)benzoic acid as initiators, yielding hydroxyl‐terminated intermediates that were then converted to carboxylic acid‐terminated prepolymers by reaction with succinic anhydride. Prepolymers were then allowed to react with an excess of acetic anhydride, followed by subsequent polycondensation to resulting high molecular weight poly(ester‐anhydride)s. Upon coupling of prepolymers, size exclusion chromatography analyses showed an increase from 3600 to 70,000 g/mol in number‐average molecular weight (Mn) for the 1,4‐butanediol initiated polymer, and an increase from 7200 to 68,000 g/mol for the 4‐(hydroxymethyl)benzoic acid‐initiated polymer. 4‐Hydroxybenzoic acid and adipic acid were also used as initiators in the preparation of poly(?‐caprolactone) prepolymers. However, with these initiators, the results were not satisfactory. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 176–185, 2001  相似文献   

7.
Random copolyester namely, poly(ethylene terephthalate‐co‐sebacate) (PETS), with relatively lower molecular weight was first synthesized, and then it was used as a macromonomer to initiate ring‐opening polymerization of l ‐lactide. 1H NMR quantified composition and structure of triblock copolyesters [poly(l ‐lactic acid)‐b‐poly(ethylene terephthalate‐co‐sebacate)‐b‐poly(l ‐lactic acid)] (PLLA‐PETS‐PLLA). Molecular weights of copolyesters were also estimated from NMR spectra, and confirmed by GPC. Copolyesters exhibited different solubilities according to the actual content of PLLA units in the main chain. Copolymerization effected melting behaviors significantly because of the incorporation of PETS and PLLA blocks. Crystalline morphology showed a special pattern for specimen with certain composition. It was obvious that copolyesters with more content of aromatic units of PET exhibited increased values in both of stress and modulus in tensile test. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
Optically active poly(L ‐phenyllactic acid) (Ph‐PLLA), poly(L ‐lactic acid) (PLLA), and poly(L ‐phenyllactic acid‐co‐L ‐lactic acid) with weight‐average molecular weight exceeding 6 × 103 g mol?1 were successfully synthesized by acid catalyzed direct polycondensation of L ‐phenyllactic acid and/or L ‐lactic acid in the presence of 2.5–10 wt % of p‐toluenesulfonic acid. Their physical properties and crystallization behavior were investigated by differential scanning calorimetry, thermogravimetry, and polarimetry. The absolute value of specific optical rotation ([α]) for Ph‐PLLA (?38 deg dm?1 g?1 cm3) was much lower than that of [α] for PLLA (?150 deg dm?1 g?1 cm3), suggesting that the helical nature was reduced by incorporation of bulky phenyl group. PLLA was crystallizable during solvent evaporation, heating from room temperature, and cooling from the melt. Incorporation of a very low content of bulky phenyllactyl units even at 4 mol % suppressed the crystallization of L ‐lactyl unit sequences during heating and cooling, though the copolymers were crystallizable for L ‐phenylactyl units up to 6 mol % during solvent evaporation. The activation energy of thermal degradation (ΔEtd) for Ph‐PLLA (200 kJ mol?1) was higher than that for PLLA (158 kJ mol?1). The ΔEtd for the copolymers increased with an increase in L ‐phenyllactyl unit content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
The suitability of different types of telechelic poly(lactic acid) (PLA) copolymers for dilactide production and prepolymer products was evaluated. L ‐lactic acid (L ‐LA) was copolymerized with 1,4‐butanediol, pentaerythritol, adipic acid, or 1,2,3,4‐butanetetracarboxylic acid (1,2,3,4‐BTCA). The influence of branching, the choice of catalyst, and the type of terminal groups on the properties and the thermal stability of the end product was determined. Carboxyl‐termination of PLA was shown to lead to higher molar masses than hydroxyl‐termination. The observed differences in the molar masses were explained by the lower thermal stability of the hydroxyl‐terminated PLA, as evidenced by the faster depolymerization rate of the hydroxyl‐terminated polymers and their higher tendency to undergo racemization. Sn(Oct)2 was found to be a more effective copolymerization catalyst than Fe(OAc)2 in terms of the final molar masses obtained. It was additionally found that the amount of chains not attached to the comonomers decreased toward longer polymerization times and was typically higher for the hydroxyl‐terminated copolymers. The results suggest that predominant carboxyl‐termination would increase the thermal stability of PLA polymers, whereas hydroxyl‐termination could be utilized to increase the production speed and efficiency of dilactide. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Poly(L ‐lactic acid) (PLLA) was blended with poly(ethylene‐co‐vinyl alcohol) (EVOH) in the presence of an esterification catalyst to induce reaction between the hydroxyl groups of EVOH and the terminal carboxylic group of PLLA. Nascent low‐molecular‐weight PLLA, obtained from a direct condensation polymerization of L ‐lactic acid in bulk state, was used for the blending. Domain size of the PLLA phase in the graft copolymer was much smaller than that corresponding to a PLLA/EVOH simple blend. The mechanical properties of the graft copolymer were far superior to those of the simple blend, and the graft copolymer exhibited excellent mechanical properties even though the biodegradable fraction substantially exceeded the percolation level. The grafted PLLA reduced the crystallization rate of the EVOH moiety. Melting peak temperature (Tm) of the PLLA phase was not observed until the content of PLLA in the graft reaction medium went over 60 wt %. The modified Sturm test results demonstrated that biodegradation of EVOH‐g‐PLLA took place more slowly than that of an EVOH/PLLA simple blend, indicating that the chemically bound PLLA moiety was less susceptible to microbial attack than PLLA in the simple blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 886–890, 2005  相似文献   

11.
Equimolar blends of poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) were obtained by solution casting from chloroform/methanol mixed solvents and analyzed using wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarizing optical microscopy. Chloroform and methanol are a solvent and non‐solvent, respectively, for poly(lactic acid). The WAXD and DSC results showed that stereocomplex crystallization between PLLA and PDLA occurred in addition to homo‐crystallization. On adding methanol to the casting solution, the stereocomplexation was gradually enhanced while the homo‐crystallization was suppressed. When a large amount of methanol was added, the homo‐crystallization was fully suppressed and the degree of stereocomplex crystallinity reached 90%. Similar results were obtained when another non‐solvent, hexane, was added to the casting solution in place of methanol. The effect of the addition of good and poor solvents such as tetrahydrofuran, ethanol, acetone and ethyl acetate was also studied. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
Novel low molecular weight poly(ester amide)s based on glycine and l ‐lactic acid with interest for the biomedical field were successfully prepared by interfacial polymerization, which is an easy and fast polymerization method. Preparation of the α‐amino acid based diamine, the l ‐lactic acid based diacyl chlorides and the poly(ester amide)s was carried out in the absence of catalysts. The structure of the different poly(ester amide)s was confirmed by 1H NMR and Fourier transform infrared spectroscopies. The thermal behaviour of the synthesized poly(ester amide)s was evaluated by simultaneous thermal analysis, differential scanning calorimetry and dynamic mechanical thermal analysis. It was found that both the incorporation of an l ‐lactic acid oligomeric segment and the change in its central unit have an important influence on the thermal characteristics of the poly(ester amide)s. These novel poly(ester amide)s can be used as building blocks for the preparation of more complex structures. © 2013 Society of Chemical Industry  相似文献   

13.
The ordered honeycomb structures of poly(L ‐lactic‐co‐glycolic acid) and poly(D ,L ‐lactic‐co‐glycolic acid) fabricated in a humid atmosphere were reported in this paper. It was found that surfactants were important in the formation of honeycomb films of hydrophobic polymer. The affecting factors, such as the environment temperature, the atmosphere humidity, and the concentration of the polymer solution of the honeycomb porous structure, were also tested. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1013–1018, 2006  相似文献   

14.
A series of compounds having hydrazide groups was prepared and evaluated as nucleating agent for poly(L ‐lactic acid) by differential scanning calorimetry. Hydrazide compounds derived from benzoic acid, 2‐hydroxybenzoic acid, 3‐tert‐butylbenzoic acid, and 2‐aminobenzoic acid, where two of hydrazide compounds connected by four methylene chain were evaluated in series. Benzoylhydrazide type was found to be more effective on the enhancement of crystallization of poly(L ‐lactic acid). Effects of connecting length of methylene chain numbers between two of benzoylhydrazide on the nucleation ability were also evaluated. Benzoylhydrazide‐type compound having 10 methylenes, that is, decamethylenedicarboxylic dibenzoylhydrazide demonstrated excellent nucleation ability, and the resulted crystallization temperature and enthalpy of PLA with the compound of 1 wt % loading were 131°C and 46 J g?1. The achieved crystallization temperature and enthalpy were over 10°C and over 10 J g?1 higher than PLA with conventional nucleating agents, such as talc and ethylenebis (12‐hydroxystearylamide). Thus, the improvement in processability, productivity, and heat resistance of PLA is suggested to be achieved by using decamethylenedicarboxylic dibenzoylhydrazide as a nucleating agent. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 198–203, 2007  相似文献   

15.
The nanohydroxyapatite/chitosan/poly(L ‐lactic acid) (HA/CS/PLLA) ternary biocomposites were prepared by blending the hydroxyapatite/chitosan (HA/CS) nanocomposites with poly(L ‐lactic acid) (PLLA) solution. Surface modification by grafting D ‐, L ‐lactic acid onto the HA/CS nanocomposites was designed to improve the bonding with PLLA. The FTIR and 13C‐NMR spectrum confirmed that the oligo(lactic acid) was successfully grafted onto the HA/CS nanocomposites, and the time‐dependent phase monitoring showed that the grafted copolymers were stable. The TEM morphology of the HA/CS/PLLA ternary nanocomposites showed that nano‐HA fibers were distributed homogeneously, compacted closely and wrapped tightly by the CS and PLLA matrix. The ternary biocomposites with the HA content of 60 and 67 wt % exhibited high compressive strength of about 160 MPa and suitable hydrophilicity. The in vitro tests exhibited that the ternary biocomposites have good biodegradability and bioactivity when immersed in SBF solutions. All the results suggested that the n‐HA/CS/PLLA ternary biocomposites are appropriate to application as bone substitute in bone tissue engineering. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

17.
Blends of poly(L ‐lactic acid) (PLA) and poly(butylene succinate) (PBS) were prepared with various compositions by a melt‐mixing method and the phase behavior, miscibility, and morphology were investigated using differential scanning calorimetry, wide‐angle X‐ray diffraction, small‐angle X‐ray scattering techniques, and polarized optical microscopy. The blend system exhibited a single glass transition over the entire composition range and its temperature decreased with an increasing weight fraction of the PBS component, but this depression was not significantly large. The DSC thermograms showed two distinct melting peaks over the entire composition range, indicating that these materials was classified as semicrystalline/semicrystalline blends. A depression of the equilibrium melting point of the PLA component was observed and the interaction parameter between PLA and PBS showed a negative value of ?0.15, which was derived using the Flory–Huggins equation. Small‐angle X‐ray scattering revealed that, in the blend system, the PBS component was expelled out of the interlamellar regions of PLA, which led to a significant decrease of a long‐period, amorphous layer thickness of PLA. For more than a 40% PBS content, significant crystallization‐induced phase separation was observed by polarized optical microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 647–655, 2002  相似文献   

18.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

19.
A polydimethylsiloxane (PDMS) macroazoinitiator was synthesized from bis(hydroxyalkyl)‐terminated PDMS and 4,4′‐azobis‐4‐cyanopentanoic acid by a condensation reaction. The bifunctional macroinitiator was used for the block copolymerization of ethyl methacrylate (EMA) and 2‐(trimethylsilyloxy)ethyl methacrylate (TMSHEMA) monomers. The poly(DMS‐block‐EMA) and poly(DMS‐block‐TMSHEMA) copolymers thus obtained were characterized using Fourier transform infrared and 1H NMR spectroscopy and differential scanning calorimetry. After the deprotection of trimethylsilyl groups, poly(DMS‐block‐HEMA) and poly(DMS‐block‐EMA) copolymer film surfaces were analysed using scanning electron microscopy and X‐ray photoelectron spectroscopy. The effects of the PDMS concentration in the copolymers on both air and glass sides of films were examined. The PDMS segments oriented and moved to the glass side in poly(DMS‐block‐EMA) copolymer film while orientation to the air side became evident with increasing DMS content in poly(DMS‐block‐HEMA) copolymer film. The block copolymerization technique described here is a versatile and economic method and is also applicable to a wide range of monomers. The copolymers obtained have phase‐separated morphologies and the effects of DMS segments on copolymer film surfaces are different at the glass and air sides. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
Traditional chromatographic separation systems are disadvantaged by low flow rates, a high pressure drop across the column, low capacity and poor reusability. Searching for more efficient separation systems we introduced the use of a ceramic monolith as robust support in bioseparations. A coating consisting of l ‐asparagine as ligand, poly(l ‐lysine) as spacer arm and a commercial poly(ethylene acrylic acid) film forming copolymer network (Michem 4983‐40R) was developed as a coating for these ceramic monoliths. Poly(l ‐lysine) was synthesized by ring‐opening polymerization of ε‐trifluoroacetyl‐l ‐lysine N‐carboxyanhydride and coupled to a commercial film‐forming poly(ethylene acrylic acid) network. This construct was then ‘decorated’ with l ‐asparagine via the terminal amino functional groups of poly(L‐lysine) and coated onto the ceramic monolith to selectively bind l ‐asparaginase. Adsorption/elution experiments showed reversible binding between l ‐asparagine and l ‐asparaginase, and the subsequent release of l ‐asparaginase, and between 83% and 94% of the active enzyme was recovered by elution with d ‐asparagine and NaCl solutions. The functional activity of the eluted l ‐asparaginase was verified by a Nessler's assay. While traditional separation processes (adsorption and elution) using gel bead packings take many hours, the ceramic monolith system achieves the same of level of separation in about 1 h. This new system served as a proof of concept for its application in protein separation and purification. This work paves the way to a better understanding of the use of ceramic monoliths as stationary phase coated with a stable polymer construct for more robust and efficient supports in affinity chromatography. © 2020 Society of Industrial Chemistry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号