首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetracycline hydrochloride loaded poly (vinyl alcohol)/chitosan/ZrO2 (Tet‐PVA/CS/ZrO2) hybrid nanofibers were fabricated via electrospinning technique. The representative weight ratio of PVA/CS at 3 : 1 was chosen to fabricate drug carrier PVA/CS/ZrO2 nanofibers. The drug carrier showed a decrease in average diameter with the increase of ZrO2 content at given conditions, and the nanofibers were uneven and interspersed with spindle‐shape beads with ZrO2 content at 60 wt % and above. The networks linked by hydrogen and Zr–O–C bonds among PVA, CS, and ZrO2 units resulted in the improving of thermal stability and decreasing of crystallinity of the polymeric matrix. Moreover, the incorporation of ZrO2 endowed the fibers with ultraviolet shielding effect ranged from 200 to 400 nm. The Tet loading dosage had no obvious effect on the morphology and size of the medicated nanofibers at Tet content below 8 wt %, but interspersed with spindle‐shaped beads when Tet content increased to 10 wt %. The Tet‐PVA/CS/ZrO2) nanofibers showed well controlled release and better antimicrobial activity against Staphylococcus aureus, and the Tet release from the medicated nanofibers could be described by Fickian diffusion model for Mt /M< 0.6. These medicated nanofibers may have potential as a suitable material in drug delivery and wound dressing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42506.  相似文献   

2.
The main aim of the present investigation is synthesis of drug‐grafted poly(vinyl alcohol) (PVA) for sustainable drug release in order to avoid bulk release and unwanted side effects. Here, the PVA was structurally modified with five different drug molecules in DMSO medium at 85 °C under N2 atmosphere for 2 h. The structure of modified PVA was confirmed by FTIR and 1H NMR spectra and further it was characterized by TGA, DSC, and SEM. The tensile strength and % elongation for the structurally modified PVA were determined. The FTIR spectrum showed peaks corresponding to the C?O and C? S stretching due to the grafted drug molecules. The 1H NMR spectrum showed the acrylic CH2 proton signal of PVA around 1.6 ppm. The SEM showed different surface morphology for the structurally modified PVA. The mechanical properties of the structurally modified PVA was found to be reduced due to the presence of traces of solvent molecules and the breaking of inter‐ and intramolecular hydrogen bonding. The sustainable drug release through hydrolysis mechanism was tested at the pH of 7.3. Generally, the drug release followed the Korsmeyer–Peppas model with Fickian drug transportation mechanism except Furosemide (Fur)‐grafted PVA system at the pH of 7.3. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46620.  相似文献   

3.
Hybrid membranes based on poly(vinyl alcohol) (PVA) of widely different molecular weights and ex situ nanosilica were synthesized and characterized as transdermal delivery device for Diltiazem hydrochloride. Investigations showed that change in PVA molecular weight strongly influenced physico‐mechanicals of the hybrids especially at low nanosilica content than at higher levels. As for example at 1 wt %, low molecular weight PVA induced finer dispersion of silica nanoparticles resulting into higher dry state crystallinity and mechanical strength but slightly lower biocompatibility as compared to high molecular weight PVA. Those variations in physico‐mechanicals finally affected Diltiazem retention and its elution from those membranes under physiological conditions. Low molecular weight PVA produced highest drug retention as well as slowest yet steady release than both high molecular weight PVA and neat PVA membranes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2076–2086, 2013  相似文献   

4.
A controlled‐release preparation of diclofenac sodium for transdermal administration has been developed. Poly(vinyl alcohol) (PVA) and PVA/poly(acrylic acid) (PAA) alloy membranes were prepared from a solvent‐casting technique using different PVA/PAA (v/v) ratios. The release of the drug from the membrane was evaluated under in vitro conditions at pH 7.4. The delivery system provided linear release without time lag, burst effect, and boundary layer resistance. Effects of variables such as film thickness and PVA/PAA ratio on the permeation behavior of the polymeric membranes were discussed. The optimal PVA/PAA was determined as 50/50. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 72–77, 2004  相似文献   

5.
A nanosilver (nano‐Ag)/poly(vinyl alcohol) (PVA) hydrogel device was synthesized with γ irradiation because it is a highly suitable tool for enhanced nano‐Ag technologies and biocompatible controlled release formulations. The amount of the Ag+ ions released in vitro by the nano‐Ag/PVA hydrogel device was in the antimicrobial parts per million concentration range. The modeling of the Ag+ ion release kinetics with the elements of the drug‐delivery paradigm revealed the best fit solution (R2 > 0.99) for the Kopcha and Makoid–Banakar's pharmacokinetic dissolution models. The term A/B, derived from the Kopcha model, indicated that the nano‐Ag/PVA hydrogel was mainly an Ag+‐ion diffusion‐controlled device. Makoid–Banakar's parameter and the short time approximated Ag+‐ion diffusion constant reflected the importance of the size of the Ag nanoparticles. However, it appeared that the cell oxidation potential of the Ag nanoparticles depended on the diffusion characteristics of the fluid penetrating into the Ag/PVA nanosystem. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40321.  相似文献   

6.
Poly(vinyl alcohol) (PVA) nanofibers containing halloysite nanotubes (HNTs) loaded with sodium d ‐pantothenate (SDP) were successfully fabricated via simple blend‐electrospinning. SDP was efficiently loaded into the innate HNT lumen with an SDP/HNT mass ratio of 1.5:1 via vacuum treatment. The SDP‐loaded HNT‐inclusion complex was evaluated with drug‐loading efficiency testing, Fourier transform infrared (FTIR) spectroscopy, and X‐ray diffraction. The morphologies of the nanofibers were observed by scanning electron microscopy, which revealed uniform and smooth surfaces of the nanofibers. The addition of HNTs to the composite nanofibers increased the viscosity of the polymer solution, and this suggested shorter fiber diameters. FTIR spectroscopy verified the good compatibility of the SDP and HNTs with PVA. Moreover, the swelling properties were found to quantitatively correlate with weight loss. In vitro drug‐release testing revealed that the HNTs and crosslinking reaction most dramatically affected the sustained release of SDP from the PVA and SDP‐loaded HNT complex. In the drug‐release kinetics model, SDP release depended on the diffusion caused by the deformation of the polymer‐based structures in the medium; it followed Fickian diffusion with acceptable coefficient of determination (r2) values between 0.88 and 0.94. Most importantly, the HNTs as natural biocontainers effectively modulated the release profile by loading the active compound in harmony with the electrospun nanofibers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42900.  相似文献   

7.
In this article, we present the drug‐release rate, water uptake, water permeability, morphology, and mechanical properties of a series of active wound dressing nanofibrous mats prepared via an electrospinning process of poly(lactic acid) (PLA), poly(?‐caprolactone) (PCL), and their (50/50) blends loaded with different doses of tetracycline hydrochloride antibiotic. The performance of these active wound dressings in terms of a sustained and suitable drug‐release rate, adequate water uptake and water permeability, and antibacterial activities were compared with those of a commercial wound dressing (Comfeel Plus). The results show that the dressings made from PCL and PLA/PCL blends showed better performance compared with the commercial wound dressing sample as far as these properties were concerned. The improved performance could be explained on the basis of the nanofibrous structure of the mats and the hydrophilicity of PCL and PLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Polymeric blend microspheres of poly(vinyl pyrrolidone) (PVP) with sodium alginate (NaAlg) were prepared by cross‐linking with calcium ions and used to deliver a calcium channel blocker drug, diltiazem hydrochloride (DT). The prepared microspheres were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Scanning electron microscopy confirmed the spherical nature of the particles. Preparation conditions for the microspheres were optimized by considering the percentage entrapment efficiency, particle size, and swelling capacity. Effects of variables such as PVP/NaAlg ratio, molecular weight of PVP, cross‐linker concentration, and drug/polymer ratio on the release of DT were discussed at two different pH values (1.2, 6.8) at 37°C. It was observed that DT release from the microspheres decreased with increasing molecular weight of PVP and extent of cross‐linking. However, DT release increased with increasing PVP content and drug/polymer ratio (d/p) of the blend microspheres. The highest DT release percentage was obtained as 99% for PVP/NaAlg ratio of 1/2 with d/p ratio of 1/2 at the end of 4 h. It was also observed from release results that DT delivery from the microspheres through the external medium are much higher at low pH (1.2) value than that of high pH (6.8) value. The drug release from the microspheres mostly followed Fickian transport. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
In this study, polymeric beads of sodium alginate (NaAlg) and its blend with poly(vinyl alcohol) (PVA) were prepared by crosslinking with glutaraldehyde (2.5% v/v) and hydrochloric acid (3% v/v) for the release of naproxen sodium (NS). The prepared beads were characterized with Fourier transform infrared spectroscopy, and pictures of the beads were determined with an optic microscope. The release studies were carried out at three pH values (1.2, 6.8, and 7.4) for 2 h. The effects of the preparation conditions, including the PVA/NaAlg (w/w) ratio, drug/polymer (w/w) ratio, and time of exposure to the crosslinker, on the release of NS were investigated for 10 h at 37°C. The release of NS decreased with the PVA/NaAlg (w/w) ratio and drug/polymer ratio increasing. At the end of 10 h, the highest release of NS was found to be 84% for the 1/2 PVA/NaAlg (w/w) ratio. The swelling measurements of the beads supported the release results. The release kinetics were described with Fickian and non‐Fickian approaches. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
The composites of pH‐responsive poly(vinyl alcohol)/poly(acrylic acid) hydrogel and activated carbon fibers (ACFs) were prepared as sustained drug release system with excellent mechanical properties. The mechanical properties of hydrogels were improved greatly by addition of ACFs. The thinner ACFs were more effective in increasing the mechanical properties of composite hydrogels. The cumulative amount of release and the release period were dependent on the surface area and the pore volume of ACFs. The drug release was maximized at basic condition due to the pH‐sensitive hydrogel matrices and the initial bust phenomenon was alleviated by incorporating ACFs in the hydrogels. The drug release was sustained about four times longer and the mechanical property was increased about 2.6 times higher because ACFs worked as drug reservoir and reinforcement. Cytotoxicity evaluation confirmed the biocompatible characteristics of the ACFs‐containing hydrogels. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Nanofibrous biocomposite scaffolds of poly(vinyl alcohol) (PVA) and graphene oxide (GO) were prepared by using electrospinning method. The microstructure, crystallinity, and morphology of the scaffolds were characterized through X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The mechanical properties were investigated by tensile testing. Moreover, Mouse Osteoblastic Cells (MC3T3‐E1) attachment and proliferation on the nanofibrous scaffolds were investigated by MTT [3‐(4,5‐dimeth‐ylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide] assay, SEM observation and fluorescence staining. XRD and FTIR results verify the presence of GO in the scaffolds. SEM images show the three‐dimensional porous fibrous morphology, and the average diameter of the composite fibers decreases with increasing the content of GO. The mechanical properties of the scaffolds are altered by changing the content of GO as well. The tensile strength and elasticity modulus increase when the content of GO is lower than 1 wt %, but decrease when GO is up to 3 and 5 wt %. MC3T3‐E1 cells attach and grow on the surfaces of the scaffolds, and the adding of GO do not affect the cells' viability. Also, MC3T3‐E1 cells are likely to spread on the PVA/GO composite scaffolds. Above all, these unique features of the PVA/GO nanofibrous scaffolds prepared by electrospinning would open up a wide variety of future applications in bone tissue engineering and drug delivery systems. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
In this study, nanoparticles based on poly(lactic acid) (PLA), chitosan (CS), and nifedipine (NIF) were prepared by an emulsion method with poly(ethylene oxide) (PEO) as an emulsifier. We investigated the most suitable conditions for preparing the poly(lactic acid)/chitosan/nifedipine nanoparticles (PCNs) by changing the distilled water volume, PEO content, and PLA/CS ratio. NIFs with different contents were loaded into poly(lactic acid)/chitosan nanoparticles (PCs) to study in vitro drug‐delivery systems. The PCNs were characterized with a Zetasizer particle size analyzer, field emission scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and X‐ray diffraction (XRD) methods. From the obtained results of the particle size parameters of the PCNs, the most suitable conditions for the preparation of the PCNs were found. The FTIR spectroscopy and XRD results show that NIF was loaded into the PCs. The PCNs had major basic particle sizes in the range 20–40 nm. NIF release from the PCNs was studied as a function of the pH of the immersed solution, the immersion time, and the NIF content. The kinetics of drug release were investigated and are reported to determine the type of release mechanism. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43330.  相似文献   

13.
Blend microspheres of chitosan (CS) with poly(vinyl alcohol) (PVA) were prepared as candidates for oral delivery system. CS/PVA microspheres containing salicylic acid (SA), as a model drug, were obtained using the coacervation‐phase separation method, induced by addition of a nonsolvent (sodium hydroxide solution) and then crosslinked with glutaraldehyde (GA) as a crosslinking agent. The microspheres were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy. Percentage entrapment efficiency, particle size, and equilibrium swelling degree of the microsphere formulations were determined. The results indicated that these parameters were changed by preparation conditions of the microspheres. Effects of variables such as CS/PVA ratio, pH, crosslinker concentration, and drug/polymer (d/p) ratio on the release of SA were studied at three different pH values (1.2, 6.8, and 7.4) at 37°C. It was observed that SA release from the microspheres increased with decreasing CS/PVA ratio and d/p ratio whereas it decreased with the increase in the extent of crosslinking. It may also be noted that drug release was much higher at pH 1.2 than that of at pH 6.8 and 7.4. The highest SA release percentage was obtained as 100% for the microspheres prepared with PVA/CS ratio of 1/2, d/p ratio of 1/2, exposure time to GA of 5 min, and concentration of GA 1.5% at the end of 6 h. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Encapsulation of bioactive molecules within polymeric particles is a challenge because of several limitations, including low drug‐loading efficiency, unwanted release profile, polydispersity and batch‐to‐batch variation in reproducibility, along with the limitations of scaling up the process. It is essential to control the morphology of pure polymer particles in the first instance, in order to obtain the desired release profile of drugs from the particles during a later stage. Here we report the preparation of electrosprayed particles from a water‐soluble US Food and Drug Administration‐recognized polymer, namely poly(vinyl alcohol) (PVA), as an approach towards a short‐term drug delivery vehicle. Through electrospraying and varying the solvent ratios, three different sizes of particles were prepared, with sizes ranging from 500 to 2000 nm. Insulin was chosen as a model bioactive molecule, and the release profile of the drug was studied after its incorporation in the PVA particles. Fractional release plots obtained showed short‐term release of insulin within the first 60 min. Release curves were analyzed according to the Ritger–Peppas model, suggesting Fickian diffusion as the predominant insulin release mechanism from the PVA particles. This work suggests electrosprayed PVA particles as an innovative drug delivery system for short‐term administration of drugs. © 2015 Society of Chemical Industry  相似文献   

15.
In this study, interpenetrated acrylic acid (AA)/poly(vinyl alcohol) (PVA) hydrogels were prepared by free‐radical polymerization with N,N‐methylene bisacrylamide (MBAAm) as a crosslinker. The basic structural parameters, such as the molecular weight between crosslinks, volume interaction parameter, number of crosslinks, Flory–Huggins solvent interaction parameter, and diffusion coefficient, were calculated. Cetirizine dihydrochloride was loaded as a model drug in selected samples. The prepared hydrogels were evaluated for swelling, sol–gel fraction, and porosity. The swelling of the AA/PVA hydrogels was found to be directly proportional to the pH, that is, 1.2–7.5, depending on composition. The percentage of cetirizine hydrochloride was found to be directly proportional to the buffer pH and was at its maximum at pH 7.5, that is, 90–95%, and its lowest at pH 1.2, that is, 20–30%. The gel fraction increased with increasing concentration of AA and MBAAm, whereas the porosity showed the same response with AA, but an inverse relationship was observed with MBAAm. The drug‐release data were fitted into various kinetics models, including the zero‐order, first‐order, Higuchi, and Peppas models, which showed non‐Fickian diffusion. The prepared hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy, and no interaction was found among the polymer ratio and the drug. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43407.  相似文献   

16.
A controlled release profile of salicylic acid (SA) for transdermal administration has been developed. Poly (vinyl alcohol) (PVA) and Poly(vinyl alcohol)/Poly(vinyl pyrrolidone) (PVP) blended preparations were used to prepare the membranes by solvent‐casting technique. The release of the drug from the membranes was evaluated at in vitro conditions. The effects of PVA/PVP (v/v) ratio, pH, SA concentration and temperature were investigated. 60/40 (v/v) PVA/PVP ratio was found to be the best ratio for the SA release. Increase in pH and temperature was observed to increase the transport of SA. Instead of blending PVA with PVP, N‐Vinyl‐2‐pyrrolidone (VP) was grafted onto the PVA and the delivery performance for SA was compared with that of the blended PVA/PVP membranes. Grafted membranes gave higher transport percentages than the blended membranes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1244–1253, 2006  相似文献   

17.
With bovine serum albumin (BSA) as a model drug, drug‐loaded films of chitosan (CS) and poly(vinyl alcohol) (PVA) were obtained by a casting/solvent evaporation method and crosslinked by tripolyphosphate (TPP). The films were characterized by FTIR, XRD, and SEM. The influential factors of drug‐loaded films on drug‐controlled release were studied. These factors included, primarily, the component ratio of CS and PVA, the loaded amount of BSA, the pH and ionic strength of the release solution, and the crosslinking time with TPP. The results showed that within 25 h, when the weight ratios of CS to PVA in the drug‐loaded films were 90 : 10, 70 : 30, 50 : 50, and 30 : 50, the cumulative release rates of BSA were 63.3, 72.9, 81.8, and 91.8%, respectively; when the amounts of model drug were 0.1, 0.2, and 0.3 g, the release rates were 100, 81.8, and 59.6%, respectively; when the pH values of the drug release medium were 1.0, 3.8, 5.4, and 7.4, the release rates reached 100, 100, 37.9, and 7.8%, respectively; the cumulative release rates of BSA were 78.4, 82.3, 84.3, and 91.7% when the ionic strengths of the release solution were, respectively, 0.1, 0.2, 0.3, and 0.4M; when the crosslinking times of these drug films in the TPP solution were 0, 5, 15, 30, and 60 min, the release rates attained 100, 100, 81.8, 65, and 43.3%, respectively. All the results indicated that the CS/PVA film was useful in drug delivery systems. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 808–813, 2005  相似文献   

18.
Ultrafine fiber mats of hydroxypropyl methyl cellulose phthalate (HPMCP) were successfully electrospun and explored as drug delivery vehicles using erythromycin as a model drug. The morphology of the electrospun fiber and the drug release process in the artificial gastric juice and in the artificial intestinal juice were investigated. With the same drug‐to‐matrix ratio (HPMCP/erythromycin = 9/1), all the fibers were electrospun into a tape‐like or ribbon shape and the average fiber diameter (AFD) was increased with the HPMCP concentration. Because of the pH‐sensitive property of HPMCP, erythromycin was released from the erythromycin‐containing electrospun HPMCP fiber mats by a slowly diffusion process in the artificial gastric juice, while it was released in nearly first‐order kinetics in the artificial intestinal juice because of the first‐order kinetics dissolution of the HPMCP fibers in the artificial intestinal juice. And the rate of erythromycin released in the artificial intestinal juice was about more than 2.5 times faster than that in the artificial gastric juice. The diameter of the fibers plays an important role on the rate and the total amount of the drug released both in stomach and in intestine, the rate and the total amount of the drug released decreasing with increasing AFD. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
In the present study, polyurethane/clay nanocomposite films have been prepared by solvent casting method. Antiseptic drug chlorhexidine acetate was intercalated into montmorillonite clay and then incorporated into the polyurethane film. For comparison, the drug was also added directly into the polymeric dope used for film casting. In addition to that, nanofibrous web containing neat drug and drug loaded clay were fabricated using electrospinning technique. The emphasis of the study was on investigating the effect of drug intercalated into nanoclay vis‐à‐vis direct drug loading in the polymer on the drug release behaviour of polyurethane nanocomposite films as well as nanofibrous webs. The effect of morphology (film vs. nanofibrous web) on the drug release kinetics has also been discussed. It is observed that the nanoclay is acting as a sustained release carrier of drug, and nanofibrous web exhibits higher drug release rate as compared to the film. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40824.  相似文献   

20.
A crosslinked amphiphilic copolymer [poly(ethylene glycol) (PEG)–poly(methyl methacrylate) (PMMA)–ethylene glycol dimethacrylate (EGDM)] composed of PMMA, PEG, and crosslinking units (EGDM) was synthesized by atom transfer radical polymerization to develop micelles as carriers for hydrophobic drugs. By adjusting the molar ratio of methyl methacrylate and EGDM, three block copolymer samples (P0, P1, and P2) were prepared. The measurement of gel permeation chromatography and 1H‐NMR indicated the formation of crosslinked structures for P1 and P2. Fluorescence spectroscopy measurement indicated that PEG–PMMA–EGDM could self‐assemble to form micelles, and the critical micelle concentration values of the crosslinked polymer were lower than those of linear ones. The prepared PEG–PMMA–EGDM micelles were used to load doxorubicin (DOX). The drug‐loading efficiencies of P1 and P2 were higher than that of P0 because the crosslinking units enhanced the micelles' stability. With increasing drug‐loading contents, DOX release from the micelles in vitro was decreased, and in the crosslinked formulations, the release rate was also slower. An in vitro release study indicated that DOX release from the micelles for the linear samples was faster than that for crosslinked micelles. The drug feeding amount increased and resulted in an increase in the drug‐loading content, and the loading efficiency decreased. These PEG–PMMA–EGDM micelles did not show toxicity in vitro and could reduce the cytotoxicity of DOX in the micelles; this suggested that they are good candidates as stable drug carriers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39623.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号