首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nano‐micro hierarchical porous polyphenylene sulfide/polytetrafluoroethylene (PPS/PTFE) composites were prepared by mold‐leaching and vacuum melting process under high temperature condition. The tribological behaviors of porous PPS/PTFE composites and the synergism as a result of incorporation of both micro‐porogen (NaCl) and mesoporous TiO2 whiskers were investigated. The effects of mesoporous TiO2 whiskers and nonperforated TiO2 whiskers on the friction and wear properties of PPS/PTFE composites were comparatively studied, respectively. Results indicated that the wear rate of porous PPS/PTFE composites with 30 wt % NaCl and 7 wt % mesoporous TiO2 whiskers obtained the lowest values under the load of 100 N. Compared with pure PPS, the wear resistance of nano‐micro porous PPS/PTFE composite was enhanced by 6.45 × 103 times, showing outstanding wear resistance. During sliding condition, grease could be squeezed through the nano‐micro pores under the coupling effect of load and friction heat, and formed a lubricanting layer on friction surface, providing self‐lubricating effect and high wear resistance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Three‐dimensional (3D) braided carbon fiber reinforced polyetheretherketone (denoted as CF3D/PEEK) composites with various fiber volume fractions were prepared via hybrid woven plus vacuum heat‐pressing technology and their tribological behaviors against steel counterpart with different normal loads at dry sliding were investigated. Contrast tribological tests with different lubricants (deionized water and sea water) and counterparts made from different materials (epoxy resin, PEEK) were also conducted. The results showed that the incorporation of 3D braided carbon fiber can greatly improve the tribological properties of PEEK over a certain range of carbon fiber volume fraction (Vf) and an optimum fiber loading of ∼54% exists. The friction coefficient of the CF3D/PEEK composites decreased from 0.195 to 0.173, while the specific wear rate increased from 1.48 × 10−7 to 1.78 × 10−7 mm3 Nm−1 with the normal load increasing from 50 to 150 N. Abrasive mechanism was dominated when the composites sliding with GCr15 steel counterpart under dry and aqueous lubrication conditions. Deionized water and sea water lubricants both significantly reduced the wear of the CF3D/PEEK composites. When sliding with neat PEEK counterpart, the CF3D/PEEK composites possess lower friction coefficient than those against epoxy resin and GCr15 steel counterparts. In general, CF3D/PEEK composites possess excellent tribological properties and comprehensive mechanical performance, which makes it become a potential candidate for special heat‐resisting tribological components. POLYM. COMPOS., 36:2174–2183, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
Polytetrafluoroethylene (PTFE)‐based composites filled with various inorganic fillers in a volume fraction of 30% were prepared. The tribological behavior of the PTFE composites sliding against AISI52100 steel under dry and liquid paraffin‐lubricated conditions was investigated on an MHK‐500 model ring‐on‐block test rig. The morphologies of worn surfaces and wear debris were observed with a scanning electron microscope (SEM) and an optical microscope. As the results, different fillers show different effects on the tribological behavior of the PTFE composites, while the composite shows much different tribological behavior under lubricated conditions as compared with dry sliding. The tribological behavior of the PTFE composites under dry sliding is greatly related to the uniformity and thickness of the transfer films. Only the PTFE composites with a transfer film of good uniformity and proper thickness may have excellent tribological behavior. The PTFE composites show much better tribological behavior under lubrication of liquid paraffin than under dry sliding, namely, the friction coefficients are decreased by 1 order of magnitude and the wear rate by 1–3 orders of magnitude. Observation of the worn composite surfaces with SEM indicates that fatigue cracks were generated under lubrication of liquid paraffin, owing to the absorption and osmosis of liquid paraffin into the microdefects of the PTFE composites. The creation and development of the fatigue cracks led to fatigue wear of the PTFE composites. This would reduce the mechanical strength and load‐supporting capacity of the PTFE composites. Therefore, the tribological behavior of the PTFE composites under lubrication of liquid paraffin is greatly dependent on the compatibility between the PTFE matrix and the inorganic fillers. In other words, the better is the compatibility between PTFE and fillers the better is the tribological behavior of the composites. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1891–1897, 2001  相似文献   

4.
Microcapsules containing an ionic liquid (IL) are potential candidate materials for preparing in situ self‐lubricating composites with excellent tribological properties. 1‐ethyl‐3‐methylimidazolium bis[(trifluoromethyl) sulfonyl]imide ([EMIm]NTf2) IL encapsulated polysulphone microcapsules are synthesized. The mean diameter and wall thickness are about 128 μm and 10 μm, respectively. Microcapsules have excellent thermal stability, with a thermal degradation onset temperature of 440 °C compared to traditional lubricants‐loaded microcapsules. In situ self‐lubricating composites are prepared by incorporating the IL‐encapsulated microcapsules into epoxy matrix. When the concentration of the IL microcapsules is 20 wt%, the frictional coefficient and specific wear rate of composites are reduced by 66.7% and 64.9% under low sliding velocity and middling applied load conditions, respectively, as compared to the neat epoxy. The tribological behavior of the self‐lubricating composites is further assessed in different applied load and sliding velocity conditions. The in situ self‐lubricating mechanism of composites is proposed.

  相似文献   


5.
The composites of poly(ether ether ketone) (PEEK) filled with micrometer‐sized Cu and Fe particles were prepared by compression molding. The friction and wear behaviors of the composites were examined on a pin‐on‐disc friction‐and‐wear tester by sliding PEEK‐based composites against tool steel at a sliding speed of 1.0 m s−1 and a normal load of 19.6N. Optical microscopic analysis of the transfer film and of the worn pin surfaces and wear debris was performed to investigate the wear mechanisms of the composites. It was found that Cu and Fe used as filler considerably decreased the wear rate of PEEK. A thin, uniform, and tenacious transfer film was formed when Cu was used as the filler, and a nonuniform and thick transfer film was formed when Fe was used as the filler. The transfer film played a key role in increasing the wear resistance of the PEEK composites. Plastic deformation was dominant for wear of PEEK–Cu, while abrasion and adhesion were dominant for wear of PEEK–Fe. Because of the strong affinity between Fe as filler and its identical counterpart in the counterface tool steel surface, the adhesion between the PEEK–Fe composite surface and the counterface tool steel surface was thus severe. This contributed to the generation of a thicker transfer film for PEEK–Fe. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 179–184, 2000  相似文献   

6.
The friction and wear behavior of polyimide (PI) composites reinforced with carbon nanotube (CNT) and polytetrafluoroethylene (PTFE) were comparatively evaluated under dry sliding, water‐, oil‐ or alkali‐lubricated condition. The wear mechanisms of the composites were also discussed. Results indicate that, when comparison with the dry friction situation, PI‐based composites results lower friction coefficients and wear rates under oil‐ or alkali‐lubricated condition. The lowest wear rate of the CNT/PTFE/PI composite is recorded as 1.2 × 10−6 mm3/Nm during the composite sliding in alkali, which is only about 40% of the value sliding under dry friction condition. The worn surface of neat PI under dry sliding is characterized by severe adhesive wear, whereas abrasive wear is the main character for CNT/PTFE/PI composites. The worn surfaces of CNT/PTFE/PI composites sliding in oil or alkali lubricated condition are smoother than those under dry or water condition. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The friction and wear characteristics of ZnO‐ or montmorillonite‐nanoparticle‐filled Kevlar fabric composites with different filler proportions when sliding against stainless steel pins under dry friction conditions were studied, with unfilled Kevlar fabric composites used as references. The worn surface and transfer film of Kevlar fabric composites were then examined with a scanning electron microscope. It was found that ZnO and montmorillonite as fillers could improve the tribological behavior of the Kevlar fabric composites with various applied loads, and the best antiwear property was obtained with the composites containing 5 wt % ZnO or montmorillonite. This indicated that these nanoparticles could prevent the destruction of Kevlar fabric composites during the friction process. The transfer film established by these nanoparticles during the sliding wear of the composites against their metallic counterpart made contributions to reducing the friction coefficient and wear rate of the Kevlar fabric composites measured in the test. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Polyetheretherketone (PEEK) composites reinforced by short carbon fibers (SCF) and potassium titanate whiskers (PTW) were prepared using twin‐screw extrusion compounding and injection molding. The tribological properties of hybrid composites were investigated in dry sliding condition against steel. The effects of filler contents on the wear behavior were studied. It was found that the hybrid composite showed an excellent tribological property in dry sliding condition. Applied load had great effect on the tribological behavior of the composites. In most cases, the friction coefficient of the composite decreased with the load rising. The composites with higher CF contents showed outstanding tribological performances at low load but could worsen the wear behavior at high load. Because of the positive effect of PTW, high PTW loading composites presented low wear rate at low load. At high loads, the composites with lower PTW contents had better wear resistance. The scanning electron microscopy (SEM) observation revealed that abrasion wear was attributed to the lower wear resistance of the high PTW content composite at high load. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The friction and wear behavior of Kevlar fabric composites reinforced by PTFE or graphite powders was investigated using a Xuanwu‐III friction and wear tester at dry sliding condition, with the unfilled Kevlar fabric composite as a reference. The worn surfaces were analyzed by means of scanning electron microscope, and X‐ray photoelectron spectroscopy. It was found that PTFE or graphite as fillers could significantly improve the tribological behavior of the Kevlar fabric composites, and the Kevlar fabric composites filled with 20% PTFE exhibited the best antiwear and antifriction ability among all evaluated cases. The transfer films established with two lubricants in sliding wear of composites against metallic counterparts made contributions to reducing friction coefficient and wear rate of Kevlar fabric composites. In particular, FeF2 generated in the sliding of Kevlar fabric composites filled with PTFE against counterpart pin improved the bonding strength between the transfer film and counterpart surface, which accounted for the lowest friction coefficient and wear rate of the Kevlar fabric composites filled with PTFE measured in the testing. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   

10.
Polyoxymethylene (POM) composites modified with nanoparticles, polytetrafluoroethylene (PTFE) and MoS2 were prepared by a twin‐screw extruder. The effect of nanoparticles and solid lubricant PTFE/MoS2 on mechanical and tribological properties of the composites were studied. Tribological tests were conducted on an Amsler friction and wear tester using a block‐on‐ring arrangement under dry sliding and oil lubricated conditions, respectively. The results showed that generally speaking POM nanocomposites had better stiffness and tribological properties than corresponding POM composites attributed to the high surface energy of nanoparticles, except that the tensile strength of three composites and dry‐sliding tribological properties of POM/3%Al2O3 nanocomposite decreased due to the agglomeration of nanoparticles. Tribological properties differed under dry sliding and oil lubricated conditions. The friction coefficient and wear volume of POM nanocomposites under oil lubricated condition decreased significantly. The increased deformation resistance supported the increased wear resistance of POM nanocomposites. POM/PTFE/MoS2/3%Al2O3 nanocomposite had the best mechanical and tribological properties of all three composites, which was attributed to the synergistic effect of nanoparticles and PTFE/MoS2. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

11.
This investigation focuses on the effects of cenosphere fillers on tribological properties of carbon fiber reinforced PEEK composites. Dry sliding wear behavior of 15 wt % short carbon fiber (SCF) reinforced PEEK composites filled with 5, 10, 15, and 20 wt % cenosphere was reported in this study, pure PEEK and 15 wt % SCF reinforced PEEK composites were also prepared for comparative analysis. Friction and wear experiments were conducted on a ring-on-block apparatus under different loads (100–400 N). The experimental results showed that all the composites exhibited lower coefficient of friction and better wear resistance than the matrix resin under different load conditions. It is noted that 10 wt % of the cenosphere particles filled SCF reinforced PEEK composites show superior tribological properties when compared to the other composites in this study. The morphologies of the worn surface and the fracture surface were analyzed by scanning electron microscopy and the transfer film was observed by optical microscope to understand the dominant wear mechanisms. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47245.  相似文献   

12.
Ultra‐high‐molecular‐weight polyethylene/poly (phenyl p‐hydroxyzoate) composites (coded as UHMWPE/PPHZ) were prepared by compression molding. The effects of the poly (phenyl p‐hydroxyzoate) on the tribological properties of the UHMWPE/PPHZ composites were investigated, based on the evaluations of the tribological properties of the composites with various compositions and the examinations of the worn steel surfaces and composites structures by means of scanning electron microscopy and transmission electron microscopy. It was found that the incorporation of the PPHZ led to a significant decrease in the wear rate of the composites. The composites with the volume fraction of the PPHZ particulates within 45% ~ 75% showed the best wear resistance. The friction coefficient of the UHMWPE/PPHZ composites decreased with increasing load and sliding velocity, while the wear rates increased with increasing load. This was attributed to the enhanced softening and plastic deformation of the composites at elevated load or sliding velocity. The UHMWPE/PPHZ composites of different compositions had differences in the microstructures and the transfer film characteristics on the counterpart steel surface as well. This accounted for their different friction and wear behaviors. The transfer film of the UHMWPE/PPHZ composites appeared to be thinner and more coherent, which was largely responsible for their better wear resistance of t composite than the UHMWPE matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2336–2343, 2005  相似文献   

13.
研究了纳米Al2O3/端异氰酸酯基聚丁二烯液体橡胶-环氧树脂(ETPB)复合材料在水润滑条件下的摩擦性能,并用扫描电子显微镜表征了复合材料的磨损表面形貌,探讨了磨损机理。结果表明,在水润滑条件下,纳米Al2O3/ETPB复合材料的磨损率和摩擦系数低于ETPB;载荷和滑动速率的变化对纳米Al2O3/ETPB复合材料的磨损率、摩擦系数及磨损表面形貌影响不大,复合材料的磨损表面均未产生裂纹;ETPB的磨损机理为疲劳磨损,纳米AlO/ETPB复合材料的磨损机理为机械抛光磨损。  相似文献   

14.
In this work, the mechanical and tribological characteristics of E‐glass fiber‐reinforced vinylester composites have been investigated experimentally under dry sliding conditions. The E‐glass fiber‐reinforced vinylester composites with uniform micron and submicron size cenosphere particulates of three different sizes (2 µm, 900 nm, and 400 nm) had been prepared in the laboratory. In this work the effect of parameters such as applied normal load, particulate size, sliding speed, sliding distance and roughness on friction and wear behavior have been carried. A plan of experiments, based on the Taguchi design, was performed to acquire data in a controlled way. An orthogonal array L27 (313) and Analysis of variance (ANOVA) have been applied to investigate the influence of process parameters on the coefficient of friction (COF) and sliding wear behavior of these composites. It was found that the submicron size particulates 400 nm as filler contributed significantly to improve the mechanical properties and wear resistance of the composites. The experimental results indicate that the specific wear rate is greatly influenced by applied normal load and particle size. ANOVA results showed that the applied normal load significantly influence the specific wear rate of cenosphere filled glass fiber‐reinforced vinylester composites. Regression analysis is carried to check the suitability of the prediction equation and modeling of the wear parameters and the typical R2 values for COF and specific wear rate are 86.7 and 94.3%, respectively. The scanning electron microscopy are used clarify the experimental in the frictional and wear testing. POLYM. COMPOS., 35:775–787, 2014. © 2013 Society of Plastics Engineers  相似文献   

15.
Polyetheretherketone (PEEK) is a kind of polymer with excellent mechanical properties combined with good wear resistance and has been widely used in the engineering field. In order to explore the possibility for PEEK using as a water-lubricated bearing material, an in-depth study on the water lubrication performance of PEEK was conducted by using a series of experiments. The water lubrication performances combined with the lubricating mechanism were evaluated both by the friction coefficient and by the wear behavior of PEEK. The results indicated that PEEK was suitable for water-lubricated bearing productions. The water film could form effectively between the friction pairs under high sliding velocity, while the transfer film could form under low sliding velocity. Both the water film and the transfer film could improve the water lubrication performance for the friction pairs. Moreover, sliding velocities and contact pressures highly influence the water lubrication performance of PEEK. The increase in contact pressure or the decrease in sliding velocity would exacerbate the wear of material. The stick–slip phenomena also occurred on the specimens under low sliding velocity. The main purpose of this study is to provide an experimental basis for PEEK using as a water-lubricated bearing material.  相似文献   

16.
The composites of polyetheretherketone (PEEK) filled with nanometer SiC of different proportions were prepared by compression molding. The tribological behaviors of the composites under lubrication of distilled water were investigated and compared with that under dry sliding, on an M‐200 friction and wear test rig, by running a plain carbon steel (AISI 1045 steel) ring against the composite block. The worn surfaces of nanometer SiC filled‐PEEK and the transfer film were observed by means of scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). As the results, nanometer SiC as the filler greatly improves the wear resistance of PEEK under dry sliding and distilled water lubrication, though the composites show different dependence of wear resistance on the filler content. Nanometer SiC‐filled PEEK showed signs of slight scuffing under distilled water lubrication, while a thin, uniform, and tenacious transfer film was formed on the surface of the counterpart steel ring. On the contrary, unfilled PEEK under lubrication of water showed signs of severe plowing and erosion, while the worn surface of the counterpart ring was very rough, and a discontinuous PEEK transfer film was formed. Thus, the different friction and wear behaviors of unfilled PEEK and nanometer SiC‐filled PEEK can be attributed to the different characteristics of the corresponding transfer films. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 609–614, 2000  相似文献   

17.
Short basalt fiber (BF) reinforced polyimide (PI) composites were fabricated by means of compression‐molding technique. The friction and wear properties of the resulting composites sliding against GCr15 steel were investigated on a model ring‐on‐block test rig under dry sliding conditions. The morphologies of the worn surfaces and the transfer films that formed on the counterpart steel rings were analyzed by means of scanning electron microscopy. The influence of the short BF content, load, and sliding speed on the tribological behavior of the PI composites was examined. Experimental results revealed that the low incorporation of BFs could improve the tribological behavior of the PI composites remarkably. The friction coefficient and wear rate decreased with increases in the sliding speed and load, respectively. The transfer film that formed on the counterpart surface during the friction process made contributions to reducing the friction coefficient and wear rate of the BF‐reinforced PI composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
The effects of lubricating‐oil additive zinc dialkyldithiophosphate (ZDDP) on the friction and wear properties of polymers and their composites sliding against GCr15 bearing steel were studied by using an MHK‐500 ring‐on‐block wear tester (Timken wear tester). Then the frictional surfaces of the friction pairs were examined by using electron probe microanalysis (EPMA). Experimental results show that the ZDDP contained in liquid paraffin has little effect on the friction coefficients of the polyimide (PI) or polyamide 66 (PA66) against GCr15 bearing steel friction pairs compared with that under the lubrication of liquid paraffin, but it slightly reduces the friction coefficients of polytetrafluoroethylene (PTFE) or its composites against GCr15 bearing steel friction pairs. Under lubrication of liquid paraffin containing 2 wt % ZDDP, the ZDDP film absorbed on the frictional surfaces of the PTFE composites–GCr15 bearing steel friction pairs exhibits obvious antiwear properties; it greatly reduces the wear of pure PTFE and the PTFE composites filled with Pb, PbO, and MoS2; and the wear of the PTFE composites can be reduced by one order of magnitude compared with that under lubrication of pure liquid paraffin. Meanwhile, the inorganic fillers Pb, PbO, and MoS2 contained in PTFE have little effect on the absorption of ZDDP to the frictional surfaces, so they have little effect on the friction coefficients of the PTFE composites–GCr15 bearing steel friction pairs under the lubrication of liquid paraffin containing 2 wt % ZDDP. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1240–1247, 2000  相似文献   

19.
Short basalt fibers (BFs)‐reinforced polyimide (PI) composites filled with MoS2 and graphite were fabricated by means of hot‐press molding technique. The tribological properties of the resulting composites sliding against GCr15 steel ring were investigated on a model ring‐on‐block test rig. The wear mechanisms were also comparatively discussed, based on scanning electron microscopic examination of the worn surface of the PI composites and the transfer film formed on the counterpart. Experimental results revealed that MoS2 and graphite as fillers significantly improved the wear resistance of the BFs‐reinforced polyimide (BFs/PI) composites. For the best combination of friction coefficient and wear rate, the optimal volume content of MoS2 and graphite in the composites appears to be 40 and 35%, respectively. It was also found that the tribological properties of the filled BFs/PI composites were closely related with the sliding conditions such as sliding speed and applied load. Research results show that the BF/PI composites exhibited better tribological properties under higher PV product. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The effects of various filler concentrations (0.1, 0.5, 1, 1.5, 2, 2.5, and 3 wt %) on the tribological and mechanical properties of carbon‐nanofiber (CNF)‐filled polytetrafluoroethylene (PTFE) composites were studied. Moreover, the influence of various loads (50, 100, 150, and 200 N) and sliding velocities (0.692 and 1.39 m/s) on the friction and wear behaviors of the PTFE composites was investigated. The results showed that the friction coefficients of the PTFE composites decreased initially up to a 0.5 wt % filler concentration and then increased, whereas the antiwear properties of the PTFE composites increased by 1–2 orders of magnitude in comparison with those of pure PTFE. The composite with a 2 wt % filler concentration had the best antiwear properties under all friction conditions. The friction coefficients of the CNF/PTFE composites decreased with increases in the load and sliding velocity, whereas the wear volume loss of the PTFE composites increased. At the same time, the results also indicated that the mechanical properties of the PTFE composites increased first up to a 1 wt % filler concentration and then decreased as the filler concentration was increased above 1 wt %. In comparison with pure PTFE, the impact strength, tensile strength, and elongation to break of the PTFE composites increased by 40, 20, and 70%, respectively, at a 1 wt % filler concentration. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2430–2437, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号