首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A doxorubicin (DOX) delivery system of pH‐sensitive micelles self‐assembled from cholesterol conjugated His5Arg10 (HR15‐Chol) and His10Arg10 (HR20‐Chol) has been described in this article. The amphiphilic molecules have low critical micelle concentrations of 17.8 and 28.2 μg/mL for HR15‐Chol and HR20‐Chol, respectively, even at a low pH of 5.0. The pH‐sensitive histidine segment of the polypeptide block is insoluble at pH 7.4 but becomes positively charged and soluble via protonation at pH lower than 6.0. The size and zeta potential of DOX‐loaded micelles increases with the decrease in pH. Coarse‐grained simulations were performed to verify the structure of DOX‐loaded micelles and pH sensitivity of HR15/20‐Chol. The in vitro DOX release from the micelles is significantly accelerated by decreasing pH from 7.4 to 5.0. Furthermore, DOX release from the micelles is controlled by a Fickian diffusion mechanism. These micelles have great potential applications in delivering hydrophobic anticancer drugs for improved cancer therapy. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

2.
The inclusion complex formed by β‐cyclodextrin (β‐CD) with the cationic surfactant hexadecyltrimethylammonium chloride (HTAC) was studied by viscometry using poly(ethylene oxide) (PEO)–HTAC aggregates as a viscosity indicator. The relative viscosity of β‐CD in aqueous PEO–HTAC solution profiles shows that the formation of the β‐CD/HTAC inclusion complex causes HTAC molecules to be stripped off the PEO chains, resulting in a decrease of aqueous solution viscosity as a result of the decrease in electrostatic repulsion between polymer‐bound HTAC micelles. The viscosity minimum at Cβ‐CD/CHTAC = 0.5 indicates that the molecular ratio of host molecule to guest molecule is 1:2 in the β‐CD/HTAC inclusion complex.  相似文献   

3.
The experiment and dissipative particle dynamics simulation were carried out on four polymers with different block ratios for the investigation of the structure–property relationship of (poly(ε‐caprolactone)2‐[poly(2‐(diethylamino)ethyl methacrylate)‐b‐poly(poly(ethylene glycol) methyl ether methacrylate)]2 [(PCL)2(PDEA‐b‐PPEGMA)2] micelles. The miktoarm star polymers assembled into spherical micelles composed of PCL core, pH‐sensitive PDEA mesosphere and poly (ethylene glycol) methyl ether methacrylate (PPEGMA) shell. When decreasing pH from 7.4 to 5.0, the hydrodynamic diameter and transmittance of (PCL)2(PDEA‐b‐PPEGMA)2 micelles increased along with globule‐uneven‐extended conformational transitions, owing to the protonation of tertiary amine groups of DEA at lower pH conditions. Doxorubicin (DOX) was mainly loaded in the pH‐sensitive layer, and more DOX were loaded in the core when increasing drug concentrations. The in vitro DOX release from the micelles was significantly accelerated by decreasing pH from 7.4 to 5.0. The results demonstrated that the pH‐sensitive micelles could be used as an efficient carrier for hydrophobic anticancer drugs, achieving controlled and sustained drug release. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3634–3646, 2014  相似文献   

4.
As drug delivery systems, stimuli‐responsive polymer micelles hold great potential in cancer chemotherapeutics to improve therapeutic efficiency and eliminate organism adverse effects. Here, pH‐sensitive polymeric micelles based on dextran‐g‐benzimidazole were designed and used for intracellular anticancer drug delivery. The anticancer drug doxorubicin (DOX) was effectively loaded into the micelles via hydrophobic interactions. In vitro release studies demonstrated that the release of loaded DOX was greater and faster under acid conditions such as in carcinomatous areas (pH < 6.8) than in physiological conditions (pH 7.4). MTT assays and flow cytometric analyses showed that DOX‐loaded micelles had higher cellular proliferation inhibition towards HeLa and HepG2 cells than pH‐insensitive controls. These pH‐sensitive micelles with significant efficiency for intracellular drug release will be beneficial to the future of in vivo biomedical applications. © 2014 Society of Chemical Industry  相似文献   

5.
A novel A2BA2‐type thermosensitive four‐armed star block copolymer, poly(N‐isopropyl acrylamide)2b‐poly(lactic acid)‐b‐poly(N‐isopropyl acrylamide)2, was synthesized by atom transfer radical polymerization and characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography. The copolymers can self‐assemble into nanoscale spherical core–shell micelles. Dynamic light scattering, surface tension, and ultraviolet–visible determination revealed that the micelles had hydrodynamic diameters (Dh) below 200 nm, critical micelle concentrations from 50 to 55 mg/L, ζ potentials from ?7 to ?19 mV, and cloud points (CPs) of 34–36°C, depending on the [Monomer]/[Macroinitiator] ratios. The CPs and ζ potential absolute values were slightly decreased in simulated physiological media, whereas Dh increased somewhat. The hydrophobic camptothecin (CPT) was entrapped in polymer micelles to investigate the thermo‐induced drug release. The stability of the CPT‐loaded micelles was evaluated by changes in the CPT contents loaded in the micelles and micellar sizes. The MTT cell viability was used to validate the biocompatibility of the developed copolymer micelle aggregates. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4137–4146, 2013  相似文献   

6.
Reduction‐responsive drug delivery systems have recently gained intense attention in intracellular delivery of anticancer drugs. In this study, we developed a PEGylated polypeptide, poly(ethylene glycol)‐block‐poly(?‐propargyloxycarbonyl‐l ‐lysine) (PEG113b‐PPAL), as a novel clickable substrate for conjugation of reduction‐responsive side chains for antineoplastic drug delivery. PEG113b‐PPAL was synthesized through ring‐opening polymerization of alkyne‐containing N‐carboxyanhydride monomers. A designed disulfide‐containing side chain was introduced onto the PEGylated polypeptide by click reaction. The obtained copolymer PEG113b‐P(Lys‐DSA) formed micelles by self‐assembly, which exhibited reduction‐responsive behavior under the stimulus of 10 mmol L–1 glutathione (GSH) in water. A small molecule intermediate, compound 2 , was used as a model to investigate the thiol reduction mechanism of PEG113b‐P(Lys‐DSA) copolymers. The anticancer drug doxorubicin (DOX) was then loaded into the micelles with a drug loading content of 6.73 wt% and a loading efficiency of 40.3%. Both the blank and the drug‐loaded micelles (DOX‐loaded polylysine derived polymeric micelles (LMs/DOX)) adopted a spherical morphology, with average diameters of 48.0 ± 13.1 and 63.8 ± 20.0 nm, respectively. The in vitro drug release results indicated that DOX could be released faster from the micelles by the trigger of GSH in phosphate buffered saline. Confocal laser scanning microscopy and flow cytometer analysis further proved the intracellular delivery of DOX by LMs/DOX and their GSH‐sensitive release behavior. A 3‐(4,5‐dimethyl‐thiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay showed that the polymers exhibited negligible cytotoxicity towards normal L929 cells or cancer MCF‐7 cells with a treated concentration up to 1.0 mg mL–1. In conclusion, our synthesized biocompatible and biodegradable PEGylated polypeptides hold great promise for intracellular antineoplastic drug delivery. © 2019 Society of Chemical Industry  相似文献   

7.
The rheological properties of aqueous systems composed of each of the four homologous cationic surfactants (3‐alkoxy‐2‐hydroxypropyl trimethyl ammonium bromides, CnHTAB, n = 12, 14, 16 and 18) in the presence of an anionic surfactant, sodium octanoate (SO), have been studied by using steady state and frequency sweep rheological measurements. The effects of surfactant concentration, hydrophobic chain length and temperature were investigated. In C14HTAB solution, the viscosity shows shear thinning in the concentration range of CC14HTAB >320 mmol/kg. Addition of SO promotes the micellar growth and results in the generation of wormlike micelles. Zero‐shear viscosity (η0) of the binary surfactant system exhibits a maximum point in the investigated concentration range, suggesting the interaction between C14HTAB and SO molecules is strongest at the optimal ratio of C14HTAB with SO. The decrease in viscosity was attributed to be the transition from entangled wormlike micelles to branching micelles after the maximum point, cryo‐TEM images revealed the changes in the structure of the wormlike micelles.  相似文献   

8.
Triblock copolymers of monomethoxy poly(ethylene glycol) (mPEG) and ε‐caprolactone (CL) were prepared with varying lengths of poly(ε‐caprolactone) (PCL) compositions and a fixed length of mPEG segment. The molecular characteristics of triblock copolymers were characterized by 1H NMR, gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), and differential scanning calorimetry (DSC). These amphiphilic linear copolymers based on PCL hydrophobic chain and hydrophilic mPEG ending, which can self‐assemble into nanoscopic micelles with their hydrophobic cores, encapsulated doxorubicin (DOX) in an aqueous solution. The particle size of prepared micelles was around 40–92 nm. The DOX loading content and DOX loading efficiency were from 3.7–7.4% to 26–49%, respectively. DOX‐released profile was pH‐dependent and faster at pH 5.4 than pH 7.4. Additionally, the cytotoxicity of DOX‐loaded micelles was found to be similar with free DOX in drug‐resistant cells (MCF‐7/adr). The great amounts of DOX and fast uptake accumulated into the MCF‐7/adr cells from DOX‐loaded micelles suggest a potential application in cancer chemotherapy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Amphiphilic thermally sensitive poly(N‐isopropylacrylamide)‐block‐poly(tetramethylene carbonate) block copolymers were synthesized by ring‐opening polymerization of tetramethylene carbonate with hydroxyl‐terminated poly(N‐isopropylacrylamide) (PNiPAAm) as macro‐initiator in the presence of stannous octoate as catalyst. The synthesis involved PNiPAAm bearing a single terminal hydroxyl group prepared by telomerization using 2‐hydroxyethanethiol as a chain‐transfer agent. The copolymers were characterized using 1H NMR and Fourier transform infrared spectroscopy and gel permeation chromatography. Their solutions show reversible changes in optical properties: transparent below the lower critical solution temperature (LCST) and opaque above the LCST. The LCST depends on the polymer composition and the media. Owing to their amphiphilic characteristics, the block copolymers form micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range 1.11–22.9 mg L?1. Increasing the hydrophobic segment length or decreasing the hydrophilic segment length in the amphiphilic diblock copolymers produces lower CMCs. A core‐shell structure of the micelles is evident from 1H NMR analyses of the micelles in D2O. Transmission electron microscopic analyses of micelle morphology show a spherical structure of both blank and drug‐loaded micelles. The blank and drug‐loaded micelles have an average size of less than 130 nm. Observations show high drug‐entrapment efficiency and drug‐loading content for the drug‐loaded micelles. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
In this study, β‐cyclodextrin (β‐CD) was covalently grafted on hydroxyapatite (HA) using a coupling agent to improve the drug loading capacity and prolong the drug release. The binding of β‐CD on the HA surface was confirmed by Fourier transformation infrared spectroscopy, thermal gravimetric analysis, and X‐ray powder diffraction. The adsorption capacity of ofloxacin on β‐CD‐grafted hydroxyapatite (β‐CD‐g‐HA) composite was found to be 30 mg g?1 at 37°C and 24 h. The adsorption process is spontaneous, given the negative values of free energy change. Compared with the release of ofloxacin loaded on HA, the release of ofloxacin loaded on β‐CD‐g‐HA was slowed down 28% and 21% in pH 2.0 and pH 7.4 buffer media at 2 h, respectively. Biocompatibility of β‐CD‐g‐HA was assessed by MTT assay, and the result showed that it had no cytotoxicity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
BACKGROUND: Endocrine disruptors in the aquatic environment and their potential adverse effects are currently issues of concern. One of these endocrine disruptors is 2,2‐bis(4‐hydroxy‐3‐methylphenyl)propane (BPP). In this work the molecular recognition interaction of BPP with β‐cyclodextrin (β‐CD) was studied using IR spectroscopy and steady state fluorescence spectroscopy, and the photocatalytic degradation behaviour of BPP based on molecular recognition interaction was investigated in a TiO2/UV–visible (λmax = 365 nm) system. This might provide a new method for the treatment of some organic pollutants in wastewater. RESULTS: β‐CD reacts with BPP to form a 1:1 inclusion complex, the formation constant of which is 4.94 × 103 L mol?1. The photodegradation rate constant of BPP after molecular recognition by β‐CD showed a 1.42‐fold increase in the TiO2/UV–visible (λmax = 365 nm) system. The photodegradation of BPP depended on the concentration of β‐CD, the pH value, the gaseous medium and the initial concentration of BPP. The photodegradation efficiency of BPP with molecular recognition was higher than that without molecular recognition. After 100 min of irradiation the mineralisation efficiency of BPP after molecular recognition by β‐CD reached 94.8%, whereas the mineralisation efficiency of BPP before molecular recognition by β‐CD was only 40.6%. CONCLUSION: The photocatalytic degradation of BPP after molecular recognition by β‐CD can be enhanced in the TiO2/UV‐visible (λmax = 365 nm) system. This enhancement is dependent on the enhancement of the adsorption of BPP, the moderate inclusion depth of BPP in the β‐CD cavity and the increase in the frontier electron density of BPP after molecular recognition. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
Bio‐based amphiphilic triblock copolymers with 100% renewably sourced poly(trimethylene ether) glycol (PO3G) as the hydrophobic blocks and statistical copolymer of 2‐(2‐methoxyethoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene glycol)methacrylate (OEGMA) [P(MEO2MA‐stat‐OEGMA)] as the hydrophilic blocks are synthesized and characterized. It is found that the molar ratio of MEO2MA/OEGMA among the resulting copolymers is approximately 70/30. The degree of polymerization (DP) of P(MEO2MA‐stat‐OEGMA) block ranges from 16 to 90, and the DP of PO3G block is fixed at 35. The amphiphilic copolymers could form core‐shell micelles self‐assembly in aqueous solution at low concentrations, and the micelles are in spherical shape with sizes varying from 121 to 188 nm. With the increasing length of hydrophilic blocks, the critical micelle concentration increases from 2.15 to 13.8 mg L?1, and the lower critical solution temperature improves from 32.5 to 38.4 °C. The in vitro doxorubicin (DOX) release study shows that all DOX‐loaded micelles have a higher release rate at 37 °C than that at 25 °C. Cytotoxicity test reveals that the blank micelles are nearly nontoxic. These results indicate that the block copolymer micelles containing 100% renewably sourced PO3G can serve as a potential drug delivery carrier. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46112.  相似文献   

13.
Novel amphiphilic star‐shaped terpolymers comprised of hydrophobic poly(?‐caprolactone), pH‐sensitive polyaminoester block and hydrophilic poly(ethylene glycol) (Mn = 1100, 2000 g mol?1) were synthesized using symmetric pentaerythritol as the core initiator for ring‐opening polymerization (ROP) reaction of ?‐caprolactone functionalized with amino ester dendrimer structure at all chain ends. Subsequently, a second ROP reaction was performed by means of four‐arm star‐shaped poly(?‐caprolactone) macromer with eight ‐OH end groups as the macro‐initiator followed by the attachment of a poly(ethylene glycol) block at the end of each chain via a macromolecular coupling reaction. The molecular structures were verified using Fourier transform infrared and 1H NMR spectroscopies and gel permeation chromatography. The terpolymers easily formed core–shell structural nanoparticles as micelles in aqueous solution which enhanced drug solubility. The hydrodynamic diameter of these agglomerates was found to be 91–104 nm, as measured using dynamic light scattering. The hydrophobic anticancer drug curcumin was loaded effectively into the polymeric micelles. The drug‐loaded nanoparticles were characterized for drug loading content, encapsulation efficiency, drug–polymer interaction and in vitro drug release profiles. Drug release studies showed an initial burst followed by a sustained release of the entrapped drug over a period of 7days at pH = 7.4 and 5.5. The release behaviours from the obtained drug‐loaded nanoparticles indicated that the rate of drug release could be effectively controlled by pH value. Altogether, these results demonstrate that the designed nanoparticles have great potential as hydrophobic drug delivery carriers for cancer therapy. © 2015 Society of Chemical Industry  相似文献   

14.
Single‐crystal β‐Si3N4 particles with a quasi‐spherical morphology were synthesized via an efficient carbothermal reduction‐nitridation (CRN) strategy. The β‐Si3N4 particles synthesized under an N2 pressure of 0.3 MPa, at 1450°C and with 10 mol% unique CaF2 additives showed good dispersity and an average size of about 650 nm. X‐ray photoelectron spectroscopy analysis revealed that there was no SiC or Si–C–N compounds in the β‐Si3N4 products. Selected‐area electron‐diffraction pattern and high‐resolution image indicated single crystalline structure of the typical β‐Si3N4 particles without an obvious amorphous oxidation layer on the surface. The growth mechanism of the quasi‐spherical β‐Si3N4 particles was proposed based on the transmission electron microscopy and energy dispersive X‐ray spectroscopy characterization, which was helpful for controllable synthesis of β‐Si3N4 particles by CRN method. Owing to the quasi‐spherical morphology, good dispersity, high purity, and single‐crystal structure, the submicro‐sized β‐Si3N4 particles were promising fillers for preparing resin‐based composites with high thermal conductivity.  相似文献   

15.
Self‐assembly of thermo‐sensitive poly (t‐butyl acrylate)‐b‐poly(N‐isopropylacrylamide) (PtBA‐ b‐PNIPAM) micelles in aqueous medium and its applications in controlled release of hydrophobic drugs were described. PtBA‐b‐PNIPAM was synthesized by atom transfer radical polymerization and aggregated into thermo‐sensitive core‐shell micelles with regular spheres in water, which was confirmed by 1H‐NMR, fluorescence spectroscopy, transmission electron microscopic (TEM), and UV–vis spectroscopic techniques. The critical micelle concentration of micelles decreased with the increase of the hydrophobic components. The anti‐inflammation drug naproxen (NAP) was loaded as the model drug into polymeric micelles, which showed a dramatic thermo‐sensitive fast/slow switching behavior around the lower critical solution temperature (LCST). When the temperature was enhanced above LCST, release of NAP from core‐shell micelles was accelerated ascribed to the temperature‐induced deformation of micelles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A series of poly(?‐caprolactone)–poly(ethylene glycol) (PCL‐PEG) and poly(?‐caprolactone/glycolide)–poly(ethylene glycol) [P(CL/GA)‐PEG] diblock copolymers were prepared by ring‐opening polymerization of ?‐caprolactone or a mixture of ?‐caprolactone and glycolide using monomethoxy PEG (mPEG) as macroinitiator and Sn(Oct)2 as catalyst. The resulting copolymers were characterized using 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Copolymer micelles were prepared using the nanoprecipitation method. The morphology of the micelles was spherical or worm‐like as revealed by transmission electron microscopy, depending on the copolymer composition and the length of the hydrophobic block. Introduction of the glycolide component, even in small amounts (CL/GA = 10), disrupted the chain structure and led to the formation of spherical micelles. Interestingly, the micelle size decreased with the encapsulation of paclitaxel. Micelles prepared from mPEG5000‐derived copolymers exhibited better drug loading properties and slower drug release than those from mPEG2000‐derived copolymers. Drug release was faster for copolymers with shorter PCL blocks than for those with longer PCL chains. The introduction of glycolide moieties enhanced drug release, but the overall release rate did not exceed 10% in 30 days. In contrast, drug release was enhanced in acidic media. Therefore, these bioresorbable micelles and especially P(CL/GA)‐PEG micelles with excellent stability, high drug loading content, and prolonged drug release could be promising for applications as drug carriers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45732.  相似文献   

17.
A series of copolymers of poly(2‐methacryloyloxyethyl phosphorylcholine)‐b‐poly(butylene succinate)‐b‐poly(2‐methacryloyloxyethyl phosphorylcholine) (PMPC‐b‐PBS‐b‐PMPC) were synthesized by atom transfer radical polymerization. The structure of the polymers was characterized by 1H NMR and infrared spectroscopy, and their thermal properties were described using TGA and DSC. In aqueous solutions, the PMPC‐b‐PBS‐b‐PMPC could form micelles with sizes ranging from 108 to 170 nm. In vitro release studies showed that acidic media and a longer PMPC chain benefited doxorubicin (DOX) release. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assays indicated that the micelles had low cytotoxicity to HeLa and L929 cells. DOX‐loaded micelles exhibited high cytotoxicity to HeLa cells. Flow cytometry results demonstrated that DOX‐loaded micelles could be internalized by HeLa cells. The in vitro phagocytosis results showed 3.9‐fold and 5.5‐fold reductions compared with poly(lactic acid) (PLA) nanoparticles and PDS55 micelles. These results demonstrate that PMPC‐b‐PBS‐b‐PMPC block copolymer micelles have great promise for cancer therapy. © 2017 Society of Chemical Industry  相似文献   

18.
In this study, Mg(OH)2 (MH) was first modified by 1‐n‐tetradecyl‐3‐carboxymethyl imidazolium chloride ([C14cim]Cl), an imidazolium ionic liquid, and then the modified MH ([C14cim]Cl‐MH) was incorporated into linear low‐density polyethylene (LLDPE) by melt‐mixing to obtain the LLDPE/[C14cim]Cl‐MH composites. The interaction between [C14cim]Cl and MH was investigated by Fourier transform infrared spectroscopy (FT‐IR). The thermal decompostion behaviors of the LLDPE/[C14cim]Cl‐MH composites were characterized by thermogravimetric analysis (TGA). The flame retardance, tensile and Izod Impact properties of the LLDPE/[C14cim]Cl‐MH composites were tested. For comparison, the LLDPE/MH composites and LLDPE/SA‐MH composites (SA‐MH is stearic acid) were prepared and their properties were studied in the same way. It was found that [C14cim]Cl interacted with MH via chemical bonding, and served as an efficient lubricant and compatibilizer for MH and LLDPE, leading to great improvements of processability and mechanical properties of the LLDPE/[C14cim]Cl‐MH composites. The LLDPE/[C14cim]Cl‐MH composites also showed a remarkably promoted char formation and effectively eliminated melt drips, thus endowing the composites with sufficiently high flame retardancy. POLYM. ENG. SCI., © 2011 Society of Plastics Engineers  相似文献   

19.
A novel highly active β‐nucleating agent, β‐cyclodextrin complex with lanthanum (β‐CD‐MAH‐La), was introduced to isotactic polypropylene (iPP). Its influence on isothermal crystallization and melting behavior of iPP was investigated by differential scanning calorimeter (DSC), wide‐angle X‐ray diffraction (WAXD), and polarized light microscopy (PLM). WAXD results demonstrated that β‐CD‐MAH‐La was an effective β‐nucleating agent, with β‐crystal content of iPP being strongly influenced by the content of β‐CD‐MAH‐La and the isothermal crystallization temperature. The isothermal crystallization kinetics of pure iPP and iPP/β‐CD‐MAH‐La was described appropriately by Avrami equation, and results revealed that β‐CD‐MAH‐La promoted heterogeneous nucleation and accelerated the crystallization of iPP. In addition, the equilibrium melting temperature (T) of samples was determined using linear and nonlinear Hoffman‐Weeks procedure. Finally, the Lauritzen‐Hoffman secondary nucleation theory was applied to calculate the nucleation parameter (Kg) and the fold surface energy (σe), the value of which verify that the addition of β‐CD‐MAH‐La reduced the creation of new surface for β‐crystal and then led to faster crystallization rate. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Chitosan‐graft‐β‐cyclodextrin (CS‐g‐β‐CD) copolymer was synthesized by conjugating β‐cyclodextrins to chitosan molecules through click chemistry. The copolymer structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). CS‐g‐β‐CD/CMC nanoparticles were prepared by a polyelectrolyte complexation process in aqueous solution between CS‐g‐β‐CD copolymer and carboxymethyl chitosan (CMC), which was used to load anticancer drug (Doxorubicin hydrochloride, DOX·HCl) with hydrophobic group. The particle size, surface charge, zeta potential, and morphology of the nanoparticles were characterized with dynamic light scattering. The drug loading efficiency and in vitro release of DOX·HCl of the nanoparticles were measured by ultraviolet spectrophotometer. The results demonstrated that the size, surface charge and drug loading efficiency of the nanoparticles could be modulated by the fabrication conditions. The drug loading efficiency of CS‐g‐β‐CD/CMC nanoparticles was improved from 52.7% to 88.1% because of the presence of β‐CD moieties with hydrophobic cavities, which can form inclusion complexes with the drug molecules. The in vitro release results showed that the CS‐g‐β‐CD/CMC nanoparticles released DOX·HCl in a controlled manner, importantly overcoming the initial burst effect. These nanoparticles possess much potential to be developed as anticancer drug delivery systems, especially those drugs with hydrophobic group. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41034.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号