首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel halogen‐free flame‐retardant composite consisting of an intumescent flame retardant (IFR), oil‐filled styrene–ethylene–butadiene–styrene block copolymer (O‐SEBS), and polypropylene (PP) was studied. On the basis of UL‐94 ratings and limiting oxygen index (LOI) data, the IFRs consisted of a charring–foaming agent, ammonium polyphosphate, and SiO2 showed very effective flame retardancy and good water resistance in the IFR O‐SEBS/PP composite. When the loading of IFR was only 28 wt %, the IFR–O‐SEBS/PP composite could still attain a UL‐94 V‐0 (1.6 mm) rating, and its LOI value remained at 29.8% after a water treatment at 70°C for 168 h. Thermogravimetric analysis data indicated that the IFR effectively enhanced the temperature of the main thermal degradation peak of the IFR–O‐SEBS/PP composites because of the formation of abundant char residue. The flammability parameters of the composites obtained from cone calorimetry testing demonstrated that water treatment almost did not affect the flammability behavior of the composite. The morphological structures of the char residue and fractured surfaces of the composites were not affected by the water treatment. This was attributed to a small quantity of IFR extracted from the composite. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39575.  相似文献   

2.
Poly(styrene‐ethylene/butylene‐styrene) (SEBS) was used as a compatibilizer to improve the thermal and mechanical properties of recycled poly(ethylene terephthalate)/linear low‐density polyethylene (R‐PET/LLDPE) blends. The blends compatibilized with 0–20 wt % SEBS were prepared by low‐temperature solid‐state extrusion. The effect of SEBS content was investigated using scanning electron microscope, differential scanning calorimeter, dynamic mechanical analysis (DMA), and mechanical property testing. Morphology observation showed that the addition of 10 wt % SEBS led to the deformation of dispersed phase from spherical to fibrous structure, and microfibrils were formed at the interface between two phases in the compatibilized blends. Both differential scanning calorimeter and DMA results revealed that the blend with 20 wt % SEBS showed better compatibility between PET and LLDPE than other blends studied. The addition of 20 wt % of SEBS obviously improved the crystallizibility of PET as well as the modulus of the blends. DMA analysis also showed that the interaction between SEBS and two other components enhanced at high temperature above 130°C. The impact strength of the blend with 20 wt % SEBS increased of 93.2% with respect to the blend without SEBS, accompanied by only a 28.7% tensile strength decrease. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Monofilaments of in situ composites were prepared from an immiscible blend of a thermotropic liquid‐crystalline polymer (TLCP), Rodrun LC3000, and a thermoplastic elastomer, styrene–(ethylene butylene)–styrene (SEBS), by a melt spinning process. Mechanical properties and the morphology of the composite monofilaments were investigated and compared with those of the extruded strands previously reported. The stresses at all tensile strains of the composite monofilaments were much higher than those of the extruded strands. The tensile strengths of both extruded strands and monofilaments were comparable, but the elongation at break of monofilaments dropped considerably. The tension sets of composite monofilaments were slightly higher than those of extruded strands. All composite monofilaments with TLCP content of ≤15 wt % exhibited good elastic recovery under the applied strain up to 200%. The dynamic mechanical storage modulus at 25°C of 10 wt % TLCP composite monofilament increased fourfold compared with that of the composite extruded strand and fivefold compared with that of the neat SEBS monofilament. The dramatic enhancement in the mechanical properties of in situ composite monofilaments is due to the formation of finer and longer TLCP fibrils (length‐to‐width ratio > 100) than those formed in the extruded strands. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 518–524, 2003  相似文献   

4.
Eighty/twenty polypropylene (PP)/styrene–ethylene–butylene–styrene (SEBS) and 80/20 PP/maleated styrene–ethylene–butylene–styrene (SEBS‐g‐MA) blends reinforced with 30 wt % short glass fibers (SGFs) were prepared by extrusion and subsequent injection molding. The influence of the maleic anhydride (MA) functional group grafted to SEBS on the properties of SGF/SEBS/PP hybrid composites was studied. Tensile and impact tests showed that the SEBS‐g‐MA copolymer improved the yield strength and impact toughness of the hybrid composites. Extensive plastic deformation occurred at the matrix interface layer next to the fibers of the SGF/SEBS‐g‐MA/PP composites during impact testing. This was attributed to the MA functional group, which enhanced the adhesion between SEBS and SGF. Differential scanning calorimetry measurements indicated that SEBS promoted the crystallization of PP spherulites by acting as active nucleation sites. However, the MA functional group grafted to SEBS retarded the crystallization of PP. Finally, polarized optical microscopy observations confirmed the absence of transcrystallinity at the glass‐fiber surfaces of both SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrid composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1303–1311, 2002  相似文献   

5.
In this research work, dynamic, mechanical, and thermophysical properties of untreated and 5, 7, and 10 wt % styrene treated tea dust (TD):polypropylene (PP) composites prepared by injection‐molding machine were elaborated. There were distinctive and significant improvement observed in mechanical properties (tensile strength, tensile modulus, and elongation at break), physical analysis (water swelling), dynamic mechanical properties (storage modulus, loss modulus, and tan δ), and thermal behavior and surface morphological properties of styrene treated TD:PP (40:60) composites as compared to that of untreated one. The tensile strength (from 7.00 to 9.95 MPa), tensile modulus (from 350 to 715 MPa), storage modulus (from 8500 to ~10,500 MPa), and loss modulus (from ~150 to ~200 MPa) increased on 10 wt % styrene treatment of TD over the untreated TD:PP (40:60) composites. The styrene treated TD:PP (40:60) composites behaved as more elastic than their pure counterpart. Styrene treated TD:PP (40:60) composites were more thermally more stable (85 °C difference) as compared to virgin PP. Overall, this research also indicates the use of TD waste. An improvement in dispersion of styrene treated TD particles in PP was also observed in the preparation of the PP composites due to good compatibility of styrene with PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44750.  相似文献   

6.
The copolymer of styrene–ethylene–butylene–styrene triblock copolymer‐g‐polylactic acid (SEBS‐g‐PLA) was successfully prepared using a novel solvothermal synthetic method, in which the graft copolymerization of PLA and SEBS was simply performed in cholorform solution at 100–150°C with benzoyl peroxide (BPO) as initiator. The effect of various factors including the reaction temperature and time and the content of BPO and PLA on the graft copolymerization was investigated in detail. It is found that the optimal reaction condition for the grafted copolymers SEBS‐g‐PLA was 120°C for 5 h, while the optimal formulation of SEBS/PLA/BPO was 5 g/2 g/0.5 g in 30 mL chloroform. The properties and microstructures of the obtained SEBS‐g‐PLA copolymers were also studied. The tensile strength and elongation at break were higher than that of pure SEBS and improved with the increase of grafting degree. In addition, SEBS‐g‐PLA copolymer possessed two‐phase structure with vague phase boundaries. The as‐prepared SEBS‐g‐PLA copolymers can be used as the toughening component to improve the impact strength of PLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
A simple method for the preparation of magnetic nanocomposites consisting of cobalt ferrite (CF; CoFe2O4) nanoparticles, polybenzoxazine (PB), linear low‐density polyethylene (LLDPE), and linear low‐density polyethylene‐g‐maleic anhydride (LgM) is described. The composites were prepared by the formation of benzoxazine (BA)–CF nanopowders followed by melt blending with LLDPE and the thermal curing of BA. The composites were characterized by X‐ray diffraction, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, universal testing machine measurement, and vibrating sample magnetometry. The composites consisting of LLDPE, PB, and LgM (47.5L–47.5PB–5LgM) exhibited a higher tensile strength (23.82 MPa) than pure LLDPE and a greater elongation at break (6.11%) than pure PB. The tensile strength of the composites decreased from 19.92 to 18.55 MPa with increasing CF loading (from 14.25 to 33.25 wt %). The saturation magnetization of the composites containing 33.25 wt % CF was 18.28 emu/g, and it decreased with decreasing amount of CF in the composite. The composite films exhibited mechanical flexibility and magnetic properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Bisphenol‐C‐formaldehyde‐toluene‐2,4‐di isocyanate polyurethane (PU) has been synthesized at room temperature and used for the fabrication of jute and jute–rice husk/wheat husk hybrid composites. PU–jute and PU–jute–RH/WH composites were prepared under pressure of 30.4 MPa at room temperature for 8 h, while PU–jute–RH/WH composites were prepared under same pressure at 110°C for 5 h. PU–jute composite has good tensile strength and flexural strength (50–53 MPa), while PU–jute–RH/WH hybrid composites have moderate tensile strength (9–11 MPa) and a fairly good flexural strength (15–31 MPa). Composites possess 1.1–2.2 kV electric strength and 0.94–1.26 × 1012 ohm cm volume resistivity. Water absorption in PU–jute composite is different in water (9.75%), 10% HCl (12.14%), and 10% NaCl (6.05%). Equilibrium water uptake time in salt environment is observed 96 h, while in pure water and acidic environments it is 192 h. In boiling water equilibrium water content and equilibrium time are found to be 21.7% and 3 h, respectively. Water absorption increased 2.2 times in boiling water, whereas equilibrium time reduced 64 times. Thus, PU–jute composite has excellent hydrolytic stability against boiling water, 10% HCl, and 10% NaCl solutions. Fairly good mechanical and electrical properties and excellent hydrolytic stability of composites signify their usefulness for low cost housing units and in electrical and marine industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2363–2370, 2006  相似文献   

9.
This work was divided into three parts. First, high‐impact polystyrene (HIPS) was submitted to a series of extrusion cycles with the objective of evaluating the consequent variations in its thermal and mechanical properties. The results showed slight variations in both the thermal and mechanical properties of HIPS. Second, degraded HIPS/styrene–ethylene–butylene–styrene (SEBS) blends and degraded HIPS/styrene–butadiene rubber (SBR) blends were prepared to evaluate the influence of the elastomeric concentration on the polymer's properties. The incorporation of SEBS or SBR allowed the recovery of the initial properties shown by virgin HIPS. Finally, blends of degraded HIPS with 2 wt % SEBS or SBR were extruded through four cycles. The mechanical properties remained constant with 2% SEBS added, whereas the mixtures of HIPS with 2% SBR showed an increase in the tensile strength as the number of extrusion cycles increased. The Vicat softening temperature decreased in both cases. The use of differential scanning calorimetry permitted the observation of differences in the crosslinking reactions of different samples as a function of the number of extrusion cycles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
The mechanical properties of recycled low-density polyethylene/wood flour (LDPE/WF) composites are improved when a maleated triblock copolymer styrene–ethylene/butylene–styrene (SEBS–MA) is added as a compatibilizer. The composites' tensile strength reached a maximum level with 4 wt % SEBS–MA content. The compatibilizer had a positive effect on the impact strength and elongation at break but decreased the composites' stiffness. Dynamic mechanical thermal analysis (DMTA), a lap shear adhesion test, and a scanning electron microscope (SEM) were used to investigate the nature of the interfacial adhesion between the WF/SEBS and between the WF/SEBS–MA. Tan δ peak temperatures for the various combinations showed interaction between the ethylene/butylene (EB) part of the copolymer and the wood flour in the maleated system. The shear lap test showed that adhesion between the wood and SEBS–MA is better than between the wood and SEBS. The electron microscopy study of the fracture surfaces confirmed good adhesion between the wood particles and the LDPE/SEBS–MA matrix. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1845–1855, 1998  相似文献   

11.
Multiwall carbon nanotube reinforced poly (phenylene sulfide) (PPS) nanocomposites were successfully fabricated through melt compounding. Structural, electrical, thermal, rheological, and mechanical properties of the nanocomposites were systematically studied as a function of carbon nanotube (CNT) fraction. Electrical conductivity of the polymer was dramatically enhanced at low loading level of the nanotubes; the electrical percolation threshold lay between 1 and 2 wt % of the CNTs. Rheological properties of the PPS nanocomposites also showed a sudden change with the CNT fraction; the percolation threshold was in the range of 0–0.5 wt % of CNTs. The difference in electrical and rheological percolation threshold was mainly due to the different requirements needed in the carbon nanotube network in different stages. The crystallization and melting behavior of CNT‐filled PPS nanocomposites were studied with differential scanning calorimetry; no new crystalline form of PPS was observed in the nanocomposites, but the crystallization rate was reduced. The thermal and mechanical properties of the nanocomposites were also investigated, and both of them showed significant increase with CNT fraction. For 5 wt % of CNT‐filled PPS composite, the onset of degradation temperature increased by about 13.5°C, the modulus increased by about 33%, and tensile strength increased by about 172%. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
A composite of short‐fiber, poly(m‐phenylene isophthalamide), and thermoplastic elastomer styrene (ethylene–butylene) styrene (SEBS), was investigated. The fiber surface was modified by N‐alkylation (heptylation and dodecylation) to improve their compatibility with a less polar SEBS matrix. Observation of fiber‐surface morphology by SEM revealed surface roughness after N‐alkylation. Nearly complete coating of the polymer matrix on the fiber was observed on a fractured surface of the composite, which is evidence for the improvement of fiber–matrix adhesion. It was found that the modulus of the composites grew with increasing fiber loading to approximately the same extent for both unmodified and modified fiber composites. Tensile strength of the modified fiber composites was found to improve significantly over that of the unmodified fiber composite. This suggests that the presence of the alkyl group on the fiber surface is responsible for an improvement of interfacial adhesion. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2414–2422, 1999  相似文献   

13.
Adding conductive carbon fillers to insulating thermoplastic polymers increases the resulting composite's electrical conductivity. Carbon nanotubes (CNTs) are very effective at increasing composite electrical conductivity at low loading levels without compromising composite tensile and flexural properties. In this study, varying amounts (2–8 wt %) of CNTs were added to polycarbonate (PC) by melt compounding, and the resulting composites were tested for electrical conductivity (1/electrical resistivity), thermal conductivity, and tensile and flexural properties. The percolation threshold was less than 1.4 vol % CNT, likely because of CNTs high aspect ratio (1000). The addition of CNT to PC increased the composite electrical and thermal conductivity and tensile and flexural modulus. The 6 wt % (4.2 vol %) CNT in PC resin had a good combination of properties for electrical conductivity applications. The electrical resistivity and thermal conductivity were 18 Ω‐cm and 0.28 W/m · K, respectively. The tensile modulus, ultimate tensile strength (UTS), and strain at UTS were 2.7 GPa, 56 MPa, and 2.8%, respectively. The flexural modulus, ultimate flexural strength, and strain at ultimate flexural strength were 3.6 GPa, 125 MPa, and 5.5%, respectively. Ductile tensile behavior is noted in pure PC and in samples containing up to 6 wt % CNT. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
In this article, we report the mechanical and biocompatibility properties of injection‐molded high‐density polyethylene (HDPE) composites reinforced with 40 wt % ceramic filler [hydroxyapatite (HA) and/or Al2O3] and 2 wt % titanate as a coupling agent. The mechanical property measurements revealed that a combination of a maximum tensile strength of 18.7 MPa and a maximum tensile modulus of about 855 MPa could be achieved with the injection‐molded HDPE–20 wt % HA–20 wt % Al2O3 composites. For the same composite composition, the maximum compression strength was determined to be 71.6 MPa and the compression modulus was about 660 MPa. The fractrography study revealed the uniform distribution of ceramic fillers in the semicrystalline HDPE matrix. The cytocompatibility study with osteoblast‐like SaOS2 cells confirmed extensive cell adhesion and proliferation on the injection‐molded HDPE–20 wt % HA–20 wt % Al2O3 composites. The cell viability analysis with the 3(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay revealed a statistically significant difference between the injection‐molded HDPE–20 wt % HA–20 wt % Al2O3 composites and sintered HA for various culture durations of upto 7 days. The difference in cytocompatibility properties among the biocomposites is explained in terms of the difference in the protein absorption behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Poly‐p‐phenyleneterephthalamide is a broadly used aramid for the strengthening of materials. Nevertheless, its relatively inert surface is an obstacle for obtaining composites with enhanced properties. In this work, three ionic liquids (IL) were investigated as compatibilizers in the preparation of styrene‐butadiene rubber (SBR)‐aramid pulp composites. The composites were characterized using hardness and tensile tests, swelling, differential scanning calorimetry, and thermal gravimetric analysis, and also scanning electron microscopy. Aramid pulp treated with IL showed more fibrillation than the untreated pulp. The best characteristics were found for the composite with 5 phr of aramid pulp‐1 wt % of physisorbed IL, which showed the lowest swelling degree compared to the IL‐free SBR‐aramid composite (341% and 410%, respectively) and the highest tensile strength (2.48 MPa), 340% superior to that of SBR (0.73 MPa), and 25% superior to the IL‐free SBR‐aramid composite (2.05 MPa). Confirming the potential of imidazolium IL to be used as compatibilizers in SBR‐aramid composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46693.  相似文献   

16.
We report the preparation of a closed‐cell polypropylene (PP) foam material by supercritical carbon dioxide foaming with the assistance of γ‐ray radiation crosslinking. Styrene–ethylene–butadiene–styrene (SEBS) copolymer was added to PP to enhance radiation crosslinking and nucleation. Radiation effects on the foaming of the PP/SEBS blend with different ratios were investigated. A significant improvement in the foaming of the crosslinked PP/SEBS blend was achieved as compared to pristine PP. The cell density of the crosslinked PP/SEBS foam greatly increased at a dose of 10 kGy and a high closed‐cell ratio was obtained. The tensile strength of the crosslinked PP/SEBS foams (10 kGy) was improved from 14 to 20.7 MPa compared to pristine PP foam (0 kGy). In addition, the crosslinked PP/SEBS blend exhibited a wider foaming temperature window (10 °C) as compared to the non‐crosslinked ones (4 °C). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45809.  相似文献   

17.
In this study, polyphosphoric acid (PPA) was used to modify styrene–ethylene/butylene–styrene (SEBS)‐modified asphalt further and decrease the SEBS content in asphalt. Different structural analysis methods including morphology observation, infrared spectroscopy, thermal analysis were used to investigate the structural characteristics of asphalt modified by SEBS or PPA before and after short‐ or long‐term thermal ageing. The study shows the suitable addition of PPA can improve the major physical and rheological properties of SEBS‐modified (SM) asphalt and the improved properties became more obvious with further ageing. 0.8 wt % PPA can replace 2 wt % SEBS in the modification. Morphology observation showed PPA increased the incompatibility between SEBS and asphalt. Thermal analysis showed PPA changed the energy consumption and mass loss of SM asphalt greatly at elevated temperatures and led to the more complex structural characteristics. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46085.  相似文献   

18.
The influence of starch on the properties of carbon‐black‐filled styrene–butadiene rubber (SBR) composites was investigated. When the starch particles were directly melt‐mixed into rubber, the stress at 300% elongation and abrasion resistance decreased evidently with increasing starch amount from 5 to 20 phr. Scanning electron microscopy observations of the abrasion surface showed that some apparent craters of starch particles were left on the surface of the composite, which strongly suggested that the starch particles were large and that interfacial adhesion between the starch and rubber was relatively weak. To improve the dispersion of the starch in the rubber matrix, starch/SBR master batches were prepared by a latex compounding method. Compared with the direct mixing of the starch particles into rubber, the incorporation of starch/SBR master batches improved the abrasion resistance of the starch/carbon black/SBR composites. With starch/SBR master batches, no holes of starch particles were left on the surface; this suggested that the interfacial strength was improved because of the fine dispersion of starch. Dynamic mechanical thermal analysis showed that the loss factor at both 0 and 60°C increased with increasing amount of starch at a small tensile deformation of 0.1%, whereas at a large tensile strain of 5%, the loss factor at 60°C decreased when the starch amount was varied from 5 to 20 phr. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Bio‐based polymer composite was successfully fabricated from plant‐derived kenaf fiber (KF) and renewable resource‐based biodegradable polyester, poly(L ‐lactide) (PLLA), by melt‐mixing technique. The effect of the KF weight contents (0, 10, 20, and 30 wt %) on crystallization behavior, composite morphology, mechanical, and dynamic mechanical properties of PLLA/KF composites were investigated. It was found that the incorporation of KF significantly improves the crystallization rate and tensile and storage modulus. The crystallization of PLLA can be completed during the cooling process from the melt at 5°C/min with the addition of 10 wt % KF. It was also observed that the nucleation density increases dramatically and the spherulite size drops greatly in the isothermal crystallization with the presence of KF. In addition, with the incorporation of 30 wt % KF, the half times of isothermal crystallization at 120°C and 140°C were reduced to 46.5% and 28.1% of the pure PLLA, respectively. Moreover, the tensile and storage modulus of the composite are improved by 30% and 28%, respectively, by the reinforcement with 30% KF. Scanning electron microscopy observation also showed that the crystallization rate and mechanical properties could be further improved by optimizing the interfacial interaction and compatibility between the KF and PLLA matrix. Overall, it was concluded that the KF could be the potential and promising filler for PLLA to produce biodegradable composite materials, owing to its good ability to improve the mechanical properties as well as to accelerate the crystallization of PLLA. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
After polyglycerol polyglycidyl ether (PGPE) and glycerol polyglycidyl ether (GPE) were mixed with tannic acid (TA) in ethanol and without solvent at epoxy/hydroxyl ratio 1/1, the obtained GPE‐TA and PGPE‐TA solutions were mixed with wood flour (WF), prepolymerized at 50°C, and subsequently compressed at 160°C for 3 h to give GPE‐TA/WF and PGPE‐TA/WF biocomposites with WF content 50–70 wt %, respectively. The storage moduli of the biocomposites in the rubbery state at more than 80°C were much higher than that of the control cured resins. The PGPE‐TA/WF composites had higher tensile modulus and rather lower tensile strength than PGPE‐TA. On the other hand, both the tensile modulus and strength of GPE‐TA/WF were much higher than those of GPE‐TA (2.4 GPa and 37 MPa). Those values of GPE‐TA/WF increased with WF content, became maximal values (5.1 GPa and 51 MPa) at WF content 60 wt %, and were lowered at 70 wt %. FE‐SEM analysis of the fractured surface of the biocomposites revealed that WF is tightly incorporated into the crosslinked epoxy resins. As a result of optimization of the epoxy/hydroxyl molar ratio for GPE‐TA/WF composite with WF content 60 wt %, the composite prepared at the ratio of 1.0/0.8 showed the highest tensile modulus and strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号