首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A phosphazene derivative, hexa‐allylamino‐cyclotriphosphazene (HACTP), was synthesized through the aminolysis of hexa‐chloro‐cyclo‐triphosphazene with excess allylamine. HACTP is a soluble light‐brown crystalline solid, which melts at 90°C. It was reactive after melt but decomposed at 236°C. When it was incorporated into the resin formulations of unsaturated polyesters, it acted as a reactive flame retardant. The oxygen index was increased from 20.5 to 25.2, rating from the flammable to self‐distinguishable scale. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 697–702, 2004  相似文献   

2.
Two flame‐retardant polyesters were polymerized with two types of phosphorous flame retardants. 3‐(Hydroxyphenyl phosphinyl)propanoic acid (HPP) was used as a main‐chain type, and 9,10‐dihydro‐9‐oxa‐10‐2,3‐dicarbonylpropyl‐10‐phosphophenanthrene‐10‐oxide (DI) was used as a pendant type. Polymerization was accomplished on a commercial scale with a three‐reactor system to exclude the compositional variation of oligomeric ethylene terephthalate. A longer polycondensation time and a higher dosage of the catalyst were necessary for DI with respect to HPP because of the high content and relatively low reactivity of the flame retardant. However, the content of diethylene glycol (DEG) in the polyester, which formed during the polymerization, was much higher in the case of HPP. The produced polyesters had almost the same molecular weight, but the DEG contents in the polyesters were quite different. The higher DEG content in the HPP polyester reduced the thermal stability. The greater flexibility of the HPP polyester chain resulted in easier crystallization and a lower crystalline temperature. The HPP polyester had higher susceptibility to thermal degradation because of low resistance to thermal chain scission, degraded at a lower temperature, and was more easily degraded because of a weak P? O bond linkage in the main chain. The DI polyester, whose phosphorous atom was highly sterically hindered, showed better alkaline resistance than the HPP polyester because of the lower acidity and lower hydrophilic DEG content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
To obtain a more efficient flame‐retardant system, the extra‐triazine‐rich compound melamine cyanurate (MCA) was coworked with tri(3‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide‐2‐hydroxypropan‐1‐yl)?1,3,5‐triazine‐2,4,6‐trione (TGIC–DOPO) in epoxy thermosets; these were composed of diglycidyl ether of bisphenol A (DGEBA) epoxy resin and 4,4′‐diaminodiphenyl methane (DDM). The flame‐retardant properties were investigated by limited oxygen index measurement, vertical burning testing, and cone calorimeter testing. In contrast to the DGEBA/DDM (EP for short) thermoset with a single TGIC–DOPO, a better flame retardancy was obtained with TGIC–DOPO/MCA/EP. The 3% TGIC–DOPO/2% MCA/EP thermoset showed a lower peak heat‐release rate value, a lower effective heat of combustion value, fewer total smoke products, and lower total yields of carbon monoxide and carbon dioxide in comparison with 3% TGIC–DOPO/EP. The results reveal that MCA and TGIC–DOPO worked jointly in flame‐retardant thermosets. The dilution effect of MCA, the quenching effect of TGIC–DOPO, and their joint action inhibited the combustion intensity and imposed a better flame‐retardant effect in the gas phase. The 3% TGIC–DOPO/2% MCA/EP thermoset also exhibited an increased residue yield, and more compositions with triazine rings were locked in the residues; this implied that MCA/TGIC–DOPO worked jointly in the condensed phase and promoted thermoset charring. The results reveal the better flame‐retardant effect of the MCA/TGIC–DOPO system in the condensed phase. Therefore, the joint incorporation of MCA and TGIC–DOPO into the EP thermosets increased the flame‐retardant effects in both the condensed and gas phases during combustion. This implied that the adjustment to the group ratio in the flame‐retardant group system endowed the EP thermoset with better flame retardancy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43241.  相似文献   

4.
A novel flame‐retardant synergist, chitosan/urea compound based phosphonic acid melamine salt (HUMCS), was synthesized and characterized by Fourier transform infrared spectroscopy and 31P‐NMR. Subsequently, HUMCS was added to a fire‐retardant polypropylene (PP) compound containing an intumescent flame‐retardant (IFR) system to improve its flame‐retardant properties. The PP/IFR/HUMCS composites were characterized by limiting oxygen index (LOI) tests, vertical burning tests (UL‐94 tests), microscale combustion calorimetry tests, and thermogravimetric analysis to study the combustion behavior and thermal stability. The addition of 3 wt % HUMCS increased the LOI from 31.4 to 33.0. The addition of HUMCS at a low additive amount reduced the peak heat‐release rate, total heat release, and heat‐release capacity obviously. Furthermore, scanning electron micrographs of char residues revealed that HUMCS could prevent the IFR–PP composites from forming a dense and compact multicell char, which could effectively protect the substrate material from combusting. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40845.  相似文献   

5.
Acrylonitrile‐butadiene‐styrene (ABS) resins are widely used in many sectors of the industry due to excellent mechanical properties, low temperature resistance, heat resistance, and chemical resistance. However, its flammability constitutes a key limitation in their applications. Consequently, development of flame‐retarding ABS resins is imperative. Herein, we report a novel synergistic system composed of Mg–Al–Co–layered double hydroxides (LDHs) prepared via a co‐precipitation method, and [4‐(diphenoxy‐phosphorylamino)‐6‐phenyl‐[l,3,5] triazin‐2‐y1]‐phosphoramidic acid diphenyl ester (DPCPB), a novel intumescent flame retardant. The properties of the as‐prepared LDHs/DPCPB/ABS composites are evaluated using standard combustion performance tests including limiting oxygen index (LOI) and vertical burning test (UL‐94). Novel ABS resins with the composition of ABS/DPCPB = 100/25 and ABS/DPCPB/LDHs = 100/2l/4 exhibit higher LOIs, 23.9 and 24.7, respectively, compared to 18.1 for the pure ABS. Meanwhile, they meet the V‐2 and A‐1 level, respectively, in UL‐94 tests. Moreover, the prepared composites exert flame‐retarding effects in gas phase and condensed phase simultaneously. Our results reveal synergistic effects between Mg–Al–Co–LDHs and DPCPB for the flame retardation of ABS resins. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46319.  相似文献   

6.
An aryl phosphinate dianhydride 1,4‐bis(phthalic anhydride‐4‐carbonyl)‐2‐(6‐oxido‐6H‐dibenz[c,e][1,2]‐oxaphosphorin‐6‐yl)‐phenylene ester (BPAODOPE) was synthesized and its structure was identified by FTIR and 1H‐NMR. BPAODOPE was used as hardener and flame retardant for preparing halogen‐free flame‐retarded epoxy resins when coupled with another curing agent. Thermal stability, morphologies of char layer, flame resistance and mechanical properties of flame‐retarded epoxy resins were investigated by thermogravimetric analysis, SEM, limiting oxygen index (LOI), UL‐94 test, tensile, and charpy impact test. The results showed that the novel BPAODOPE had a better flame resistance, the flame resistance and char yield of flame‐retarded epoxy resins increased with an increase of phosphorus content, tensile strength and impact strength of samples gradually decreased with the addition of BPAODOPE. The flame‐retarded sample with phosphorus contents of 1.75% showed best combination properties, LOI value was 29.3, and the vertical burning test reached UL‐94 V‐0 level, tensile strength and impact strength were 30.78 MPa and 3.53 kJ/m2, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
A flame retardant tri‐(phosphaphenanthrene‐(hydroxyl‐methylene)‐phenoxyl)‐1, 3, 5‐triazine (Trif‐DOPO) and its control samples are incorporated into diglycidyl ether of bisphenol‐A (DGEBA) and 4, 4′‐diamino‐diphenyl sulfone (DDS) to prepare flame retardant thermosets, respectively. According to the results of limited oxygen index (LOI), UL94 vertical burning test and cone calorimeter test, the Trif‐DOPO/DGEBA/DDS thermoset with 1.2 wt % phosphorus possesses the LOI value of 36% and UL94 V‐0 flammability rating, and Trif‐DOPO can decrease the peak of heat release rate (pk‐HRR) and reduce the total heat release (THR) of thermosets. All these prove better flame retardant performance of Trif‐DOPO than that of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide(DOPO). The residue photos of thermosets after cone calorimetry test disclose that Trif‐DOPO can promote the formation of thick and tough melting char layer for combined action of the flame retardant groups of Trif‐DOPO. The results from thermo gravimetric analysis (TGA) and pyrolysis‐gas chromatography‐mass spectrometry(Py‐GC/MS) show that the groups in Trif‐DOPO can be decomposed and produce PO2 fragments, phosphaphenanthrene and phenoxy fragments, which can jointly quench the free radical chain reaction during combustion. Therefore, the excellent flame retardancy of Trif‐DOPO is attributed to its flame retardant group‐synergic‐effect. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39709.  相似文献   

8.
In this article, the kinetics of thermal decomposition of unsaturated maleic–phthalic polyester resins, flame‐retarded with zinc hydroxystannate, was studied by thermogravimetric analysis at different heating rates. At the first stage, it was found, on the basis of isoconversional analysis by the methods of Friedman and of Ozawa–Flynn–Wall, that the value of the (apparent) activation energy (E) characteristically changes in three steps during the degradation. Further kinetic studies using nonlinear regression methods revealed the best fits for both pristine and stabilized resins. It was observed that the course of E versus the degree of conversion (α) during degradation of zinc hydroxystannate‐containing resins (α > 0.8) was characterized by higher values of E—this phenomenon can be explained in terms of the flame‐retardation action of zinc hydroxystannate, which is believed to operate primarily in the condensed phase. At the next stage, kinetic analysis by the nonregression method was performed to find the kinetic model [f(α) function] of the decomposition process; hence, for pristine resin, the best fit was found for the Avrami–Yerofeeyev model (nuclei growth), and for stabilized samples, the nth‐order function with catalysis proved to be the best approximation. The obtained kinetic parameters in the form of E, the preexponential factor A, and the model function f(α) allow a prediction of the polyester resin's thermal behavior in an extrapolated range of degree of conversion, time, and temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2851–2857, 2003  相似文献   

9.
Development of high‐performance thermosetting resins by adding environmentally friendly flame retardant to heat‐resistant resins without deteriorating their outstanding thermal stability is an important research direction. Here, a unique hybrid (GHNT) consisting of graphene oxide (GO) and halloysite nanotubes (HNT) was synthesized, and then a series of composites based on cyanate ester (CE) resin were fabricated. The effects of GHNT on the heat resistance, flame retardancy, and smoke suppression of GHNT/CE composites were intensively investigated. The GHNT/CE composite with 5.0 wt % GHNT not only has about 15.1 °C higher initial degradation temperature, but also shows 54.6% or 37.9% lower peak heat release rate or maximum smoke density than CE resin. These results clearly demonstrate that GHNT is not the simple combination of GO and HNT; instead, it obviously shows positive synergistic effects in simultaneously improving the flame retardancy and thermal resistance of CE resin. The improved flame retardancy could be attributed to condensed‐phase mechanisms, including increasing char yield, building a dense char layer, and free radical scavenging. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46587.  相似文献   

10.
Polyhedral oligomeric silsesquioxane containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DP) was used to flame‐retard 4,4′‐bismaleimidophenyl methane (BDM)/2,2′‐dially bisphenol A (DBA) resins, and the integrated properties of the resins were investigated. The fire resistance of BDM/DBA resins containing DP was analyzed by limiting oxygen index (LOI) and vertical burning (UL94) tests. The results show that DP increased the LOI of the resins from 25.3 to 38.5%. The BDM/DBA resins were evaluated to have a UL‐94 V‐1 rating, which did not satisfy the high standards of industry. On the other hand, BDM/DBA containing DP achieved a UL‐94 V‐0 rating. The thermal stability and char formation were studied by thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy. TGA and scanning electron microscopy–energy‐dispersive X‐ray spectrometry measurements demonstrated that the DP resulted in an increase in the char yield and the formation of the thermally stable carbonaceous char. The results of Raman spectroscopy showed that the DP enhanced the graphitization degree of the resin during combustion. Moreover, the modified BDM/DBA resins exhibited improved dielectric properties. Specifically, the dielectric constant and loss at 1 MHz of the BDM/DBA/15% DP resin were 3.11 and 0.008, respectively, only about 93 and 73% of those of the BDM/DBA resin. All of the investigations showed that DP was an effective additive for developing high‐performance resins with attractive flame‐retardant and dielectric properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41545.  相似文献   

11.
A novel phosphonate flame retardant additive bis(2,6‐dimethyphenyl) phenylphosphonate (BDMPP) was synthesized from phenylphosphonic dichloride and 2,6‐dimethyl phenol, and its chemical structure was characterized by Fourier transform infrared (FTIR) spectroscopy, 1H and 31P nuclear magnetic resonance. The prepared BDMPP and curing agent m‐phenylenediamine were blended into epoxy resins (EP) to prepare flame retardant EP thermosets. The effect of BDMPP on fire retardancy and thermal degradation behavior of EP/BDMPP thermosets was investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter and thermalgravimetric analysis (TGA). The morphologies of char residues of the EP thermosets were investigated by scanning electron microscopy (SEM) and the water resistant properties of thermosets were evaluated by putting the samples into distilled water at 70°C for 168 h. The results demonstrated that the cured EP/14 wt % BDMPP composites with the phosphorus content of 1.11 wt % successfully passed UL‐94 V‐0 flammability rating and the LOI value was as high as 33.8%. The TGA results indicated that the introduction of BDMPP promoted EP matrix decomposed ahead of time compared with that of pure EP and led to a higher char yield at high temperature. The incorporation of BDMPP enhanced the mechanical properties and reduced the moisture absorption of EP thermosets. The morphological structures of char residue revealed that BDMPP benefited to the formation of a more compact and homogeneous char layer on the materials surface during burning, which prevented the heat transmission and diffusion, limit the production of combustible gases and then lead to the reduction of the heat release rate. After water resistance tests, EP/BDMPP thermosets still remained excellent flame retardancy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42765.  相似文献   

12.
A bio‐based thermoset resin has been synthesized from glycerol reacted with lactic acid oligomers of three different chain lengths (n): 3, 7, and 10. Lactic acid was first reacted with glycerol by direct condensation and the resulting branched molecule was then end‐functionalized with methacrylic anhydride. The resins were characterized by Fourier‐transform infrared spectroscopy (FT‐IR), by 13C‐NMR spectroscopy to confirm the chemical structure of the resin, and by differential scanning calorimetry and dynamic mechanical thermal analysis (DMTA) to obtain the thermal properties. The resin flow viscosities were also measured using a rheometer with different stress levels for each temperature used, as this is an important characteristic of resins that are intended to be used as a matrix in composite applications. The resin with a chain length of three had better mechanical, thermal, and rheological properties than the resins with chain lengths of seven and 10. Also, its bio‐based content of 78% and glass transition temperature of 97°C makes this resin comparable to commercial unsaturated polyester resins. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40488.  相似文献   

13.
A novel P? C? N bond containing azaphosphorine, 5‐(4‐hydroxy)anilinomethyl‐1,3‐di(4‐hydroxy)phenyl‐1,3,5‐diazaphosphorinane (ADDPP‐OH), which could be used as both a cocuring agent and a flame‐retarding agent for epoxy resins (EPs), was synthesized from tetrakis(hydroxymethyl)phosphonium sulfate and characterized by FTIR, 1H‐NMR, 13C‐NMR, 31P‐NMR, and so on. Compared with the pure EP, the ADDPP‐OH–EP composites showed increased decomposition temperatures and char yields. When the content of ADDPP‐OH was 10 wt %, the cured EP composite possessed a limiting oxygen index value of 33.7% and passed the V‐0 rating of the UL‐94 test. The mechanical properties of the ADDPP‐OH–EP composites was improved because of the increased crosslinking density. In addition, the morphology of the residual char indicated an intumescent and multiporous structure in the inner space and a compact and continual appearance in the outer layer; this was important in preventing the materials from burning further. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45721.  相似文献   

14.
By adjusting the molar ratios of antistatic monomer of octyl phenol ethylene oxide acrylate (denoted as AS), rigid monomer of methyl methacrylate (denoted as MMA), and flame‐retardant monomer of 2‐(phosphoryloxymethyl oxyethylene) acrylate (denoted as FR), a series of flame‐retardant antistatic copolymers poly (octyl phenol ethylene oxide acrylate‐co‐methyl methacrylate‐co‐phosphoryloxymethyl oxyethylene acrylate) (donated as AMF) were synthesized through radical polymerization. Among the obtained copolymers, two copolymers, AMF162 (the feed molar ratio of AS, MMA, and FR as 1 : 6 : 2) and AMF1104 (the feed molar ratio of AS, MMA, and FR as 1 : 10 : 4) with different concentrations were added into polypropylene (PP) to prepare PP‐AMF162 and PP‐AMF1104 series of composites. The thermal stability, limiting oxygen index, the antistatic property, and mechanical properties of PP composites were tested and analyzed. PP‐AMF162 series composites have excellent antistatic effect. When the AMF162 content was equal to or <15 wt %, the impact strength of PP‐AMF162 composites was higher than that of pure PP. The results indicated that copolymer AMF162 was a suitable flame‐retardant and antistatic additive for PP. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41677.  相似文献   

15.
Two phosphorus‐containing phenolic amines, a 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO)‐based derivative (DAP) by covalently bonding DOPO and imine (SB) obtained from the condensation of p‐phenylenediamine with salicylaldehyde, and its analog (AP) via the addition reaction between diethyl phosphite and SB, were used to prepare flame‐retardant epoxy resins. The burning behaviors and dynamic mechanical properties of epoxy thermosets were studied by limited oxygen index (LOI) measurement, UL‐94 test, and dynamic mechanical analysis. The flame‐retardant mechanisms of modified thermosets were investigated by thermogravimetric analysis, Py‐GC/MS, Fourier transform infrared, SEM, elemental analysis, and laser Raman spectroscopy. The results revealed that epoxy thermoset modified with DAP displayed the blowing‐out effect during UL‐94 test. With the incorporation of 10 wt % DAP, the modified thermoset showed an LOI value of 36.1% and V‐0 rating in UL‐94 test. The flame‐retardant mechanism was ascribed to the quenching and diluting effect in the gas phase and the formation of phosphorus‐rich char layers in the condensed phase. However, the thermoset modified with 10 wt % AP only showed an LOI value of 25.7% and no rating in UL‐94 test, which was possibly ascribed to the mismatching of charring process with gas emission process during combustion. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43953.  相似文献   

16.
A novel, halogen‐free, phosphorus–nitrogen containing flame retardant 2[4‐(2,4,6‐Tris{4‐[(5,5‐dimethyl‐2‐oxo‐2λ5‐[1,3,2]dioxaphosphinan‐2‐yl)hydroxymethyl]phenoxy}‐(1,3,5)‐triazine (TNTP) was successfully synthesized in a three‐step process, and characterized by FTIR, NMR spectroscopy, mass spectra, and elemental analysis. A series of modified DGEBA epoxy resin with different loadings of TNTP were prepared and cured by 4,4‐diaminodiphenylsulfone (DDS). Thermal gravimetric analysis and vertical burning test (UL‐94) were used to evaluate the flame retardancy of TNTP on DGEBA epoxy resin. The results showed that TNTP had a great impact on flame retardancy. All modified thermosets by using TNTP exhibited higher Tg than pure DGEBA/DDS. The loading of TNTP at only 5.0 wt % could result in satisfied flame retardancy (UL‐94, V‐0) together with high char residue (27.3%) at 700°C. The addition of TNTP could dramatically enhance the flame retardancy of DGEBA epoxy resins, which was further confirmed by the analysis of the char residues by scanning electron microscopy and FTIR. Furthermore, no obviously negative effect was found on the Izod impact strength and flexural property of DGEBA epoxy resins when TNTP loading limited in 5.0 wt %. DGEBA/DDS containing 2.5 wt % TNTP could enhance Izod impact strength from 10.47 to 10.94 kJ m?2, and showed no appreciable effect on the flexural property (85.20 MPa) comparing with pure DGEBA/DDS (87.03 MPa). Results indicated that TNTP as a phosphorus–nitrogen synergistic intumescent flame retardant could be used for DGEBA epoxy resin. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41079.  相似文献   

17.
The combination of gas‐phase and condensed‐phase action will contribute to high quality flame retardant. A novel 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO)‐based flame retardant (DOPO‐DOPC), which contains carbon source was synthesized in favor of conducting the effect of gas‐phase as well as promoting the char formation in condensed‐phase. The chemical structure of DOPO‐DOPC was characterized by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). DOPO–DOPC was used as an additive in poly(ethylene terephthalate) (PET) and epoxy resin (EP). The flame retardancy of PET/DOPO‐DOPC and EP/DOPO‐DOPC composites were studied by limiting oxygen index (LOI) and UL‐94 test. The results showed that the incorporation of DOPO–DOPC into PET or EP could obviously improve their flame retardancy. The LOI values of modified PET or EP, which contained 10 wt % DOPO‐DOPC reached 42.8 and 31.7%, respectively. The thermogravimetric analysis (TGA) results revealed that DOPO–DOPC enhanced the formation of char residues. The Laser Raman spectroscopy (LRS) was used to investigate the carbon structure of thermal oxidation residues. Because of the combination of the gas phase flame retardant effect of DOPO moiety and the promoting formation of char residues in condensed phase, the PET and EP composites exhibited significant improvement toward flame retardancy. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44639.  相似文献   

18.
Flame retardants (FRs) are used for in protection against fire. Organic–inorganic hybrids could become one of the most promising FR solution in the future. In this paper, the synthesis, the characterization and the use as FRs and filler of grafted titania and alumina with 2‐chloroethylphosphonic acid are presented. These hybrids contain 3.8–3.24% P and have good flame retardance when they are incorporated into unsaturated polyester resins. Alumina treated with 2‐chloroethylphosphonic acid performed better than titania. The advantage of this approach is the use of these hybrid materials as filler and FR, in the same time, and the increase in flame retardancy by synergistic effect between alumina phosphorus and chlorine, for unsaturated polyester resins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A novel halogen‐free flame retardant, O,O‐diethyl‐O‐allyl thiophosphate (DATP), which simultaneously contained phosphorus and sulfur, was synthesized through a simple method. The structure of DATP was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, and mass spectroscopy. The flame‐retardant copolymer was obtained by the free‐radical copolymerization of DATP with acrylonitrile. The flammability and thermal degradation characteristics of the copolymer were assayed by limiting oxygen index measurement, thermogravimetric analysis, and differential scanning calorimetry. The results show that the incorporation of a small percentage of DATP into the copolymer had a significant effect on the retarding combustion of the copolymer, with the limiting oxygen index of the copolymer reaching 28.5% and the char yield being 68.63 wt % at 554°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
用于环氧树脂不饱和聚酯的聚合物型磷系阻燃剂   总被引:4,自引:1,他引:3  
研究了1种新型富芳香结构的含磷聚合物阻燃剂聚苯基磷酸(9,10-二氢-9-氧杂-10-膦酰杂菲)苯撑酯(PDPPP)的合成及其对环氧树脂(ER)、不饱和聚酯树脂(USPE)的阻燃性能的影响。这种阻燃剂是由2-(6-氧-6氢-膦酰杂菲)1,4-对苯二酚(ODOPB)与苯膦酰二氯通过熔融缩聚获得。将磷含量为13.8%的PDPPP添加到环氧树脂、不饱和树脂中,结果表明该聚合物对环氧树脂、不饱和树脂具有良好的阻燃性能,PDPPP含量只需达到2%即磷含量只需达到0.28%时氧指数LOI可达28,阻燃性UL-94可达到V0级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号