首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: There has been a recent surge of interest in the synthesis and applications of electroactive polymers with incorporated metal nanoparticles. These hybrid systems are expected to display synergistic properties between the conjugated polymers and the metal nanoparticles, making them potential candidates for applications in sensors and electronic devices. RESULTS: Composites of polyaniline derivatives—polyaniline, poly(2,5‐dimethoxyaniline) and poly(aniline‐2,5‐dimethoxyaniline)—and silver nanoparticles were prepared through simultaneous polymerization of aniline derivative and reduction of AgNO3 in the presence of poly(styrene sulfonic acid) (PSS). We used AgNO3 as one of the initial components (1) to form the silver nanoparticles and (2) as an oxidizing agent for initiation of the polymerization reaction. UV‐visible spectra of the synthesized nanocomposites reveal the synchronized formation of silver nanoparticles and polymer matrix. The morphology of the silver nanoparticles and degree of their dispersion in the nanocomposites were characterized by transmission electron microscopy. Thermogravimetric analysis and differential scanning calorimetry results indicate an enhancement of the thermal stability of the nanocomposites compared to the pure polymers. The electrical conductivity of the nanocomposites is in the range 10?4 to 10?2 S cm?1. CONCLUSION: A single‐step process for the synthesis of silver nanoparticle–polyaniline derivative nanocomposites doped with PSS has been demonstrated. The approach in which silver nanoparticles are formed simultaneously during the polymerization process results in a good dispersion of the nanoparticles in the conductive polymer matrix. Copyright © 2008 Society of Chemical Industry  相似文献   

2.
The use of α, ω‐alkanedisulfonic acid, HO3S(CH2)nSO3H (n = 1, 4, 6 and 12), as a dopant for polyaniline (PANi) was investigated. This series of disulfonic acids with varying chain lengths were synthesized and used in the doping of PANi. The doped polymers showed conductivity in the range 10?2 to 10?1 S cm?1. Thermal studies showed that the doped polymers, depending on the chain length of α,ω‐alkanedisulfonic acid, were stable up to ca 300 °C and the thermal stability decreased with increasing dopant chain length. The thermal stability of α,ω‐alkanedisulfonic acid‐doped PANi was higher than that of alkanesulfonic acid‐doped PANi which typically degrades around 250 °C, suggesting a moderately broader processing window for α,ω‐alkanedisulfonic acid‐doped PANi for blending with other thermoplastics. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
Poly(p‐phenylene) (H‐PPP), which is one of the firstly investigated conducting polymer, has the disadvantage of difficult processability because it is infusible and insoluble. The use of biphenyl instead of benzene leads to ortho‐, meta‐, para‐polyphenylenes (H‐PP) which are more soluble and easier to be processed, however their electrical conductivity is lower. Copolymers of polyphenylenes (C1 and C2) and corresponding homopolymers (H‐PPP and H‐PP) were produced by the oxidative cationic polymerization of benzene and/or biphenyl. The soluble (‐S) and the insoluble (‐I) in chlorobenzene polyphenylenes were separated (H‐PP‐I, H‐PP‐S, C1‐I, C1‐S, C2‐I, and C2‐S) and they were doped with a solution of FeCl3. All polyphenylenes were studied by FTIR, XRD, TGA, and their electrical conductivity with constant current was determined. Pronounced differences between the copolymers and the homopolymers were observed, indicating the different structure of the former. The values of the electrical conductivity of doped insoluble copolymers (10?4 and 10?5 S/cm) are between that of H‐PPP (10?3 S/cm) and H‐PP‐I (10?6 S/cm). The values of the electrical conductivity of doped soluble copolymers (10?5 S/cm) are considerably higher than that of H‐PP‐S (10?9 S/cm). The new electrically conductive polyphenylenes that were produced differ significantly from the corresponding homopolymers and combine good electrical conductivity and solubility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
The electrostatic charge dissipative (ESD) properties of conducting self‐doped and PTSA-doped copolymers of aniline (AA), o‐methoxyaniline (methoxy AA) and o‐ethoxyaniline (ethoxy AA) with 3‐aminobenzenesulfonic acid (3‐ABSA) blended with low‐density polyethylene (LDPE) were investigated in the presence of external dopant p‐toluenesulfonic acid (PTSA). Blending of copolymers with LDPE was carried out in a twin‐screw extruder by melt blending by loading 1.0 and 2.0 wt% of conducting copolymer in the LDPE matrix. The conductivity of the blown polymers blended with LDPE was in the range 10?12–10?6 S cm?1, showing their potential use as antistatic materials for the encapsulation of electronic equipment. The DC conductivity of all self‐doped homopolymers and PTSA‐doped copolymers was measured in the range 100–373 K. The room temperature conductivity (S cm?1) of self‐doped copolymers was: poly(3‐ABSA‐co‐AA), 7.73 × 10?4; poly(3‐ABSA‐co‐methoxy AA), 3.06 × 10?6; poly(3‐ABSA‐co‐ethoxy AA), 2.99 × 10?7; and of PTSA‐doped copolymers was: poly(3‐ABSA‐co‐AA), 4.34 × 10?2; poly(3‐ABSA‐co‐methoxy AA), 9.90 × 10?5; poly(3‐ABSA‐co‐ethoxy AA), 1.10 × 10?5. The observed conduction mechanism for all the samples could be explained in terms of Mott's variable range hopping model; however, ESD properties are dependent upon the electrical conductivity. The antistatic decay time is least for the PTSA‐doped poly(3‐ABSA‐co‐AA), which has maximum conductivity among all the samples. © 2013 Society of Chemical Industry  相似文献   

5.
An advanced nanocomposite, polyaniline tungstophosphate (PANI‐WP) cation exchanger, was synthesized by simple solution method and treated with silver nitrate resulting silver embedded PANI‐WP (PANI‐WP/Ag). Spectroscopic characterization of PANI‐WP/Ag was carried out by scanning electron microscopy, fourier transform infrared spectroscopy, UV‐Visible spectroscopy, and X‐ray diffraction. Electrical conductivity measurements and thermal effect on conductivity of PANI‐WP/Ag was studied after acid treatment. The dc electrical conductivity was found 3.06 × 10−3 S cm−1 for HCl doped, measured by 4‐in line‐probe dc electrical conductivity measuring technique. Thermal conductivity is stable with all temperatures in isothermal studies showing excellent stability of PANI‐WP/Ag material. Hybrid showed better linear Arrhenius electric conducting response for semiconductors, stable upto 120°C. It was observed that conductivity is at the border of metallic and semiconductor region. POLYM. COMPOS., 37:2460–2466, 2016. © 2015 Society of Plastics Engineers  相似文献   

6.
Poly(p‐phenylenediamine) (PPDA) and also its ladder‐like analogue were prepared by oxidation of p‐phenylenediamine with ammonium peroxydisulfate in an aqueous solution of 0.4 mol L?1 hydrochloric acid and converted to PPDA bases. These were used as reductants of silver nitrate to silver nanoparticles in 1 mol L?1 methanesulfonic acid or in water at various mole ratios of silver nitrate to p‐phenylenediamine units from 0 to 1.8. The original conductivity of the PPDA, 10?12 S cm?1, increased to the order of 100 S cm?1 for the PPDA–silver composites containing 27–40 wt% (i.e. 4.5–6.6 vol%) silver. Fourier transform infrared spectra indicated a practically unchanged molecular structure of PPDA in the composites. In contrast, Raman spectroscopy showed the existence of regions with unchanged molecular structure of PPDA as well as the presence of regions containing silver particles and oxidized PPDA moieties. © 2014 Society of Chemical Industry  相似文献   

7.
Nanocomposites of iron oxide (Fe3O4) with a sulfonated polyaniline, poly(aniline‐co‐aminonaphthalenesulfonic acid) [SPAN(ANSA)], were synthesized through chemical oxidative copolymerization of aniline and 5‐amino‐2‐naphthalenesulfonic acid/1‐amino‐5‐naphthalenesulfonic acid in the presence of Fe3O4 nanoparticles. The nanocomposites [Fe3O4/SPAN(ANSA)‐NCs] were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, elemental analysis, UV–visible spectroscopy, thermogravimetric analysis (TGA), superconductor quantum interference device (SQUID), and electrical conductivity measurements. The TEM images reveal that nanocrystalline Fe3O4 particles were homogeneously incorporated within the polymer matrix with the sizes in the range of 10–15 nm. XRD pattern reveals that pure Fe3O4 particles are having spinel structure, and nanocomposites are more crystalline in comparison to pristine polymers. Differential thermogravimetric (DTG) curves obtained through TGA informs that polymer chains in the composites have better thermal stability than that of the pristine copolymers. FTIR spectra provide information on the structure of the composites. The conductivity of the nanocomposites (~ 0.5 S cm?1) is higher than that of pristine PANI (~ 10?3 S cm?1). The charge transport behavior of the composites is explained through temperature difference of conductivity. The temperature dependence of conductivity fits with the quasi‐1D variable range hopping (quasi‐1D VRH) model. SQUID analysis reveals that the composites show ferromagnetic behavior at room temperature. The maximum saturation magnetization of the composite is 9.7 emu g?1. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

8.
By oxidative coupling polymerization of the macromonomer of oligoaniline and p‐phenylenediamine we have prepared a novel electroactive polyamide, exhibiting well‐defined molecular structure, interesting spectroscopic and electrochemical properties. The well‐defined molecular structure of the electroactive polyamide was confirmed by FTIR, NMR spectroscopy, elemental analysis and X‐ray powder diffraction (XRD) and the resulting polyamide exhibit an enhanced solubility in most of the organic solvents as compared with polyaniline. The UV–Vis spectra were used to monitor the chemical oxidation process of the reduced polyamide. Electrochemical activity of the polyamide was tested in 1.0M H2SO4 aqueous solution and it shows three redox peaks, which is different from the polyaniline. Moreover, the thermal properties of the polyamide were evaluated by thermogravimetric analysis (TGA) and it shows moderate thermal resistance in the N2 atmosphere. Its electrical conductivity is about 1.04 × 10?4 S cm?1 at room temperature upon preliminarily protonic‐doped experiment. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1603–1608, 2007  相似文献   

9.
A new dihydroxy monomer, (E)‐1‐(4‐(4‐(4‐hydroxybenzylidene)thiocarbamoylaminobenzyl)phenyl)‐3‐(4‐hydroxybenzylidene)thiourea, was synthesized and polymerized with thiophene‐2,5‐dicarbonyl/terephthaloyl chloride. The structural characterization of the resulting polymers was carried out using spectral techniques (Fourier transform infrared and 1H NMR) along with a physical property investigation. Novel polyesters are readily soluble in various amide solvents and possess high molar mass of 112 × 103–133 × 103 g mol?1. The thermal stability was determined via 10% weight loss to be in the range 519–523 °C and the glass transition temperature was 286–289 °C. Electrically conducting poly(azomethine‐ester)‐blend‐polyaniline blends were prepared using mash‐blending and melt‐blending techniques. Materials obtained using the conventional melt‐blending approach generated an efficient conductive network compared with those produced by mash blending. Field emission scanning electron microscopy revealed a nano‐blend morphology for the melt‐blended system owing to increased physical interactions (hydrogen bonding and π–π stacking) between the two constituent polymers. Miscible blends of thiophene‐based poly(azomethine‐ester)‐blend‐polyaniline had superior conductivity (1.6–2.5 S cm?1) and thermal stability (T10 = 507 °C) even at low polyaniline concentration relative to reported thiophene/azomethine/polyaniline‐based structures. The new thermally stable and conducting nano‐blends could be candidates for various applications including optoelectronic devices. © 2012 Society of Chemical Industry  相似文献   

10.
The electrical conductivity of poly(2-ethynylthiophene) (P2ET) and poly(2-ethynylfuran) (P2EF) doped with electron acceptors such as iodine, bromine, and ferric chloride was investigated. The maximum electrical conductivities of P2ET and P2EF doped with iodine were 3 × 10?4 Ω?1 cm?1 and 5 × 10?3 Ω?1 cm?1, respectively. The electrical conductivity was nearly independent with increasing molecular weight. The spectral measurements such as UV-visible, infrared, electron paramagnetic resonance, thermogravimetric analysis, and X-ray diffraction were also carried out.  相似文献   

11.
We report a new method for the synthesis of polythiophene (PTh)/graphene oxide (GO) nanocomposites by interfacial polymerization. Polymerization occurred at the interface of two immiscible solvents, i.e. n‐hexane containing thiophene and nitromethane containing GO and an initiator. Characterizations were done using Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, X‐ray diffraction, scanning electron microscopy, thermogravimetric analysis, and electrochemical and electrical conductivity measurements. Spectroscopic analyses showed successful incorporation of GO in the PTh matrix. Morphological analysis revealed good dispersion of GO sheets in the polymer matrix. The PTh/GO composites showed marked improvements in thermal stability and electrical conductivity (2.7 × 10?4 S cm?1) compared to pure PTh. The composites exhibited excellent electrochemical reversibility compared to pure PTh at a scan rate of 0.1 V s?1. The composites were stable even up to 100 electrochemical cycles, indicating good cycle performance. The specific capacitance of the composites was calculated using cyclic voltammetry and was found to be 99 F g?1. © 2014 Society of Chemical Industry  相似文献   

12.
Polyaniline, poly(aniline‐co‐4,4′‐diaminodiphenylsulfone), and poly(4,4′‐diaminodiphenylsulfone) were synthesized by ammonium peroxydisulfate oxidation and characterized by a number of techniques, including infrared spectroscopy, ultraviolet–visible absorption spectroscopy, 1H‐NMR, thermogravimetric analysis, and differential scanning calorimetry. These copolymers had enhanced solubility in common organic solvents in comparison with polyaniline. The conductivities of the HCl‐doped polymers ranged from 1 S cm?1 for polyaniline to 10?8 S cm?1 for poly(4,4′‐diaminodiphenylsulfone). The copolymer compositions showed that block copolymers of 4,4′‐diaminodiphenylsulfone (r1 > 1) and aniline (r2 < 1) formed and that the reactivity of 4,4′‐diaminodiphenylsulfone was greater than that of aniline. The results were explained by the effect of the ? SO2? group present in the polymer structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2337–2347, 2003  相似文献   

13.
We investigated an easy way to prepare industrially a conductive paint made with polyaniline (PANI)/dodecylbenzenesulfonic acid (DBSA) dispersion and poly(methyl methacrylate) (PMMA) in organic media. First, water‐dispersible PANI doped with DBSA was chemically synthesized with aniline sulfate using ammonium persulfate in water, and the resulting PANI/DBSA was readily extracted from the reaction medium with a mixture of toluene and methyl ethyl ketone (MEK) (toluene:MEK = 1:1 (v/v)), which is useful for industrial applications. The obtained PANI/DBSA organic dispersion was mixed with PMMA organic solution to give the corresponding PANI/DBSA conductive paint containing PMMA. A film prepared with the resulting PANI/DBSA conductive paint was found to possess relatively good conductivity and low surface resistivity for a conductive paint utilized for an electrostatic discharge even at low PANI/DBSA content in the PANI/DBSA–PMMA composite film (the conductivity and the surface resistivity were 9.48 × 10?4 S cm?1 and 3.14 × 106 Ω cm?2, respectively, when the feed ratio of PANI/DBSA:PMMA was 1:39 (w/w)). Furthermore, it was found that the conductivity of the film composed of PANI/DBSA–PMMA composite can be readily and widely controlled by the PANI/DBSA content of the composite or by the amount of DBSA used during the PANI/DBSA synthesis. The highest conductivity of PANI/DBSA–PMMA composite film (7.84 × 10?1 S cm?1) was obtained when the feed ratio of PANI/DBSA:PMMA was 1:4 (w/w). Copyright © 2007 Society of Chemical Industry  相似文献   

14.
N‐type Bi2O2Se has a bright prospect for mid‐temperature thermoelectric applications on account of the intrinsically low thermal conductivity. However, the low carrier concentration of Bi2O2Se (~1015 cm?3) severely limits its thermoelectric performance. Herein, the boosting of the carrier concentration to ~1019 cm?3 can be realized in our La‐doped Bi2O2Se ceramic samples, which could be ascribed to the formation of isoelectronic traps and the narrowing of band gap, and contribute to a marked increase in the electrical conductivity (from 0.03 S cm?1 to 182 S cm?1). Our X‐ray absorption near‐edge structure spectra results reveal that a local disordering of oxygen atoms could be an important reason for the intrinsically low thermal conductivity of Bi2O2Se, and the point defects can also suppress the lattice thermal conductivity in La‐doped Bi2O2Se. The ZT value can be enhanced by a factor of ~4.5 to 0.35 at 823 K for Bi1.98La0.02O2Se as compared to the pristine Bi2O2Se. The coordinated optimization of electrical and thermal properties demonstrates an effective method for the rational design of high‐performance thermoelectric materials.  相似文献   

15.
The conductivities of blends of low‐density polyethylene and poly(4‐vinyl pyridine) (P4VP) were studied. The blends were synthesized by in situ sorption and thermal polymerization of 4‐vinylpyridine in low‐density polyethylene. They showed, after iodine doping, conductivities of 1.7 to 5.0 × 10?7 S cm?1 at 298 K, depending on the P4VP mass increment into the matrix. Their conductivities were one order of magnitude higher for measurements at 338 K. The optimum ratio of iodine to pyridine (n) which gave the highest conductivity was 0.21. The thermal stability of doped blends was acceptable for their uses as electrochemical devices. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 939–944, 2003  相似文献   

16.
Conducting polyaniline (PANI)/titanium dioxide (TiO2) composite nanofibres with an average diameter of 80–100 nm were prepared by one‐step in situ polymerization method in the presence of anatase nano‐TiO2 particles, and were characterized via Fourier‐transform infrared spectra, UV/vis spectra, wide‐angle X‐ray diffraction, thermogravimetric analysis, and transmission electron microscopy, as well as conductivity and cyclic voltammetry. The formation mechanism of PANI/TiO2 composite nanofibres was also discussed. This composite contained ~ 65% conducting PANI by mass, with a conductivity of 1.42 S cm?1 at 25°C, and the conductivity of control PANI was 2.4 S cm?1 at 25°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
Polyaniline (PANI), poly(o‐anisidine), and poly[aniline‐co‐(o‐anisidine)] were synthesized by chemical oxidative polymerization with ammonium persulfate as an oxidizing reagent in an HCl medium. The viscosities, electrical conductivity, and crystallinity of the resulting polymers (self‐doped forms) were compared with those of the doped and undoped forms. The self‐doped, doped, and undoped forms of these polymers were characterized with infrared spectroscopy, ultraviolet–visible spectroscopy, and a four‐point‐probe conductivity method. X‐ray diffraction characterization revealed the crystalline nature of the polymers. The observed decrease in the conductivity of the copolymer and poly(o‐anisidine) with respect to PANI was attributed to the incorporation of the methoxy moieties into the PANI chain. The homopolymers attained conductivity in the range of 3.97 × 10?3 to 7.8 S/cm after doping with HCl. The conductivity of the undoped forms of the poly[aniline‐co‐(o‐anisidine)] and poly(o‐anisidine) was observed to be lower than 10?5 J/S cm?1. The conductivity of the studied polymer forms decreased by the doping process in the following order: self‐doped → doped → undoped. The conductivity of the studied polymers decreased by the monomer species in the following order: PANI → poly[aniline‐co‐(o‐anisidine)] → poly(o‐anisidine). All the polymer samples were largely amorphous, but with the attachment of the pendant groups of anisidine to the polymer system, the crystallinity region increased. The undoped form of poly[aniline‐co‐(o‐anisidine)] had good solubility in common organic solvents, whereas doped poly[aniline‐co‐(o‐anisidine)] was moderately crystalline and exhibited higher conductivity than the anisidine homopolymer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

18.
Silver/polyaniline nanocomposites were synthesized in reversed micellar solution, and the reaction was performed via in situ reduction of silver nitrate in aniline by photolysis. The nanocomposites were characterized by ultraviolet‐visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, thermo‐gravimetric analysis, differential scanning calorimetric analysis, and electrochemical methods. The results showed that the Ag/polyaniline nanocomposites are composed of nano‐sized particles of 15–30 nm that contain Ag domains of 10–15 nm. The electrical conductivity of an Ag/polyaniline pellet is 95.89 S cm−1, whereas a polyaniline pellet is found to be 3.1 × 10−2 S cm−1. Ag/polyaniline composites also have a higher degradation temperature and specific capacitance, when compared with pure polyaniline. Potentiodynamic polarization showed the anodic shifting of the zero current potential and a lower exchange current density for the Ag/polyaniline composite. Compared with polyaniline, the Ag/polyaniline nanocomposite is a promising candidate for coatings with improved anticorrosion performance. POLYM. COMPOS.,, 2012. © 2012 Society of Plastics Engineers  相似文献   

19.
Nitrilic rubbers containing 29 or 45% of acrylonitrile were blended with polyaniline doped with different acids (chloridric, dodecylbenzenesulfonic, tetrapropylbenzenesulfonic, and p‐toluenesulfonic acids). The blends were prepared by mechanical mixing in a roll‐mill and vulcanized in a hot press. The volumetric conductivities and mechanical properties were evaluated. The results show that the polyaniline concentration strongly affects the behavior of the blends. Increasing the polyaniline content from 50 to 100 phr induces an increase in the electric conductivity from 10−10 to 10−8 S cm−1; however, the blends become harder and more brittle than the crude rubber. Addition of polyaniline lowered the crosslinking degree, but produced a reinforcing effect in the elastomer. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 677–684, 2000  相似文献   

20.
The development of polymeric thin films has attracted attention in the optoelectronics field due to their transparency. The aim of the research presented was to obtain transparent polyaniline thin films by easy in situ oxidative polymerization of aniline with ammonium persulfate in the presence of a binary doping agent–poly(vinyl alcohol) mixture. Poly(acrylic acid), 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid or sodium dodecylsulfate were mixed with hydrochloric acid to form the binary doping agents. Polyaniline thin films were produced during aniline polymerization on Corning glass slides immersed in the mixture in order to study their optical, electrical and morphological properties. The optical absorption coefficient and the energy band gap were evaluated by optical transmission of the films in the UV‐visible spectral region. The optical absorption coefficient of all polyaniline films was of the order of 104 cm?1 with a maximum transmittance up to 80% at 550 nm. In order to investigate the effect of the mixture on the surface morphology and roughness of the films, atomic force microscopy was used. In general, surface roughness was reduced threefold by adding a mixture and optical transmission was increased by 20–30% without significantly affecting the absorption coefficient and the band gap of polyaniline. Islands and needle‐like structures on the film surfaces were obtained from various mixtures affecting the conductivity; for example, 0.17 S cm?1 was obtained from needle‐like morphology, while 1.9 × 10?4 S cm?1 was obtained from island morphology. Raman spectroscopy studies confirmed the presence of poly(vinyl alcohol) in the thin films. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号