首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was aimed at understanding how the process conditions affect the weld‐line strength and microstructure of injection molded microcellular parts. A design of experiments (DOE) was performed and polycarbonate tensile test specimens were produced for tensile tests and microscopic analysis. Injection molding trials were performed by systematically adjusting four process parameters (i.e., melt temperature, shot size, supercritical fluid (SCF) level, and injection speed). For comparison, conventional solid specimens were also produced. The tensile strength was measured at the weld line and away from the weld line. The weld‐line strength of injecton molded microcellular parts was lower than that of its solid counterparts. It increased with increasing shot size, melt temperature, and injection speed, and was weakly dependent on the supercritical fluid level. The microstructure of the molded specimens at various cross sections were examined using scanning electron microscope (SEM) and a light microscope to study the variation of cell size and density with different process conditions.  相似文献   

2.
Gas assist injection molding has increasingly become an important industrial process because of its tremendous flexibility in the design and manufacture of plastic parts. However, there are some unsolved problems that limit the overall success of this technique. The purpose of this report was to study the surface roughness phenomenon occurring in gas assist injection molded thermoplastic composities. The materials used were 15 % and 35% glass‐fiber filled nylon‐6 composites. Experiments were carried out on an 80‐ton injection molding machine equipped with a high‐pressure nitrogen‐gas injection unit. Two “float‐shape” axisymmetric cavities were used. After molding, the surface quality of molded parts was measured by a roughness meter. Various processing variables were studied in terms of their influence on formation of surface roughness: melt temperature, mold temperature, melt filling speed, short‐shot size, gas pressure, and gas injection delay time. Scanning electronic microscopy was also employed to characterize the composites. It was found that the surface roughness results mainly from the exposure of glass fiber in the matrix. The jetting and irregular flows of the polymer melt during the filling process might be factors causing the fiber exposure.  相似文献   

3.
Microcellular injection molding offers many advantages such as material and energy savings, reduced cycle times, and excellent dimensional stability. However, typical surface characteristics of microcellular injection molded parts—such as gas flow and swirl marks and a lack of smoothness—have precluded the process from being used for applications where surface appearance is important. This article presents an insulator‐assisted method that has been shown to improve the surface quality of microcellular injection molded parts significantly. By incorporating a thin film (75–225 μm) of polytetrafluoroethylene (PTFE) insulator on the mold surface, the polymer melt–insulator interfacial temperature can be manipulated and can be kept high enough during mold filling to reduce or eliminate swirl marks on the surface. The experimental results in terms of surface roughness and surface profile of conventional and microcellular injection molded parts with and without the insulator film are discussed. Thermal analyses of the corresponding microcellular injection molding experiments were performed to elucidate the correlation between film thickness, interfacial temperature, and the surface quality. The effect of insulator on the cooling time increase is also analyzed and presented. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

4.
This paper reports the study of microcellular injection molding of low-density polyethylene- (LDPE) based composites. The effects of adding nanoclays and polymer additives in LDPE as well as rheological property of materials on the cell morphology, mechanical properties and surface properties of microcellular injection molded LDPE based composites are presented. For the microcellular injection molding process, when 3 wt% of nanoclays are added into LDPE-based polymers, the cell morphology can be significantly improved due to the nucleating effects resulting from the broad interface areas between polymer and nanoclays. Also, the addition of low melt flow LDPE into high melt flow LDPE could achieve smaller and denser bubbles in the polymer matrix than neat high melt flow LDPE.  相似文献   

5.
综述了近几年来国内外注塑微发泡制品研究进展。重点阐述了反压压力、模具温度、注塑工艺、无机填料和聚合物共混对注塑微发泡制品表面质量和发泡形貌的影响。最后对该领域以后的发展方向进行了展望。  相似文献   

6.
The effects of adding nanoclay to polyamide‐6 (PA‐6) neat resin, and the effects of processing parameters on cell density and size in microcellular injection‐molded components were investigated. In addition, the crystal sizes, structures, and orientation were analyzed with the use of x‐ray diffraction (XRD) and a polarized optical microscope. The standard ASTM D 638‐02 tensile bars for the analyses were molded according to a fractional four‐factor, three‐level, L9 Taguchi design of experiment (DOE) with varying melt temperature, injection speed, supercritical fluid (SCF) concentration, and shot size. It was found that the presence of montmorillonite (MMT) nanoclay greatly reduced the size of the cells and crystals, but increased their density in comparison with neat resin processed under identical molding conditions. In addition, at the sprue section downstream of the machine nozzle, cell size gradually decreased from the part center toward the skin for both the neat resin and the nanocomposite. It was also found that shot size was the most important processing parameter for both the neat resin and nanocomposite in affecting cell density and size in microcellular injection molding components. Weakly preferred crystal orientations were observed on the surface of microcellular injection‐molded PA‐6/MMT tensile bars. Finally, the addition of nanoclay in PA‐6 neat resin facilitated the formation of γ‐phase crystals in the molded components. Polym. Eng. Sci. 45:52–61, 2005. © 2004 Society of Plastics Engineers.  相似文献   

7.
A mathematical formulation and numerical simulation for non‐isothermal cell growth during the post‐filling stage of microcellular injection molding have been developed. The numerical implementation solves the energy equation, the continuity equation, and a group of equations that describe the mass diffusion of dissolved gas and growth of micro‐cells in a microcellular injection molded part. The “unit‐cell” model employed in this study takes into account the effects of injection and packing pressures, melt and mold temperatures, and super‐critical fluid content on the material properties of the polymer‐gas solution and the cell growth. The material system studied is a microcellular injection molded polyamide 6 (PA‐6) resin. Two Arrhenius‐type equations are used to estimate the coefficients of mass diffusion and solubility for the polymer‐gas solution as functions of temperature. The dependence of the surface tension on the temperature is also included in this study. The numerical results in terms of cell size across the sprue diameter agree fairly well with the experimental observation. The predicted pressure profile at the sprue location has also been found to be in good agreement with the dynamics of the cell growth. Whereas for conventional injection molding the pressure of the system tends to decay monotonously, the pressure profile in microcellular injection molding exhibits an initial decay resulting from cooling and the absence of packing followed by an increase due to cell growth that expands the polymer‐gas solution and helps to pack out the mold uniformly. Polym. Eng. Sci. 44:2274–2287, 2004. © 2004 Society of Plastics Engineers.  相似文献   

8.
Injection molding products made of aluminum flakes and polymer blends exhibit a distinctive esthetic effect. However, during the filling process, the melt flows in different directions converge and collide, resulting in the flop effect of the aluminum flake and consequent weld line formation. Herein, microcellular injection molding (MIM) was employed to fabricate polypropylene/aluminum flakes (PP/Al) composite foamed parts with distinct weld lines using supercritical nitrogen (scN2) as the physical blowing agent. The scN2 content has a significant effect on cell diameter and cell density. When the scN2 content was 0.6%, the weld line width of the foamed part was 13.03 μm, while it was 30.41 μm for the solid counterpart due to the expansion and rupture of cells in the flow front during filling. Moreover, the orientation of Al flakes was mostly along the flow direction for the foamed parts, while it was generally aligned perpendicular to the flow direction for solid parts in the weld line region. In addition, the flexural modulus of foamed parts was increased by 29% compared with the solid parts, although the tensile strength was reduced by 18% due to the alignment of Al flakes and the stress concentration on the cell walls. Therefore, this work provides insight into the improvement of flexural property and the mitigation of weld lines for injection molded composite parts using MIM.  相似文献   

9.
This article presents a new process for producing microcellular injection molded plastic parts using water as the physical blowing agent and micro‐scaled particles as the cell nucleating agents. Distilled water with dissolved salt were fed through the hopper of an injection molding machine at a preset rate and mixed with polycarbonate (PC) in the machine barrel. Microcellular PC tensile bars were then injection molded with different shot volumes, water/salt solution feed rates, and salt concentrations. Tiny salt crystals of 10–20 μm recrystallized during molding acted as nucleating agents in the PC foamed parts. The surface roughness, mechanical properties, and microstructure of the solid and foamed parts were measured and compared with microcellular injection molded parts using supercritical fluid (SCF) nitrogen as the physical blowing agent. At a similar weight reduction of about 10%, the water foamed PC parts have a smooth surface comparable to that of solid injection molded parts. They also possess similar, if not better, mechanical properties compared to SCF nitrogen foamed PC parts. Without the nucleating agent, PC/water foamed parts exhibit much larger and fewer bubbles within the molded parts. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
Means of reducing the flow-induced residual stresses in injection molded parts through optimization of the thermal history of the process are presented. An approach through the use of a passive insulation layer with low thermal inertia on the cavity surface was investigated. The passive insulation layer prevents the polymer melt from freezing during mold filling and allows the flow-induced stresses to relax after the filling. The criteria for the optimal thermal properties and the required thickness of the layer are presented. A numerical simulation model of non-isothermal filling and cooling of viscoelastic materials was also used to understand the molding process and to evaluate this approach. This model predicts the stress development and relaxation in the molding cycle. Both simulation and experimental results show that the final stresses in the molded parts can be reduced significantly with the use of an insulation layer. This technique can also be applied to other molding or forming processes in order to decouple the material flow and cooling process for minimum residual stresses in the molded parts.  相似文献   

11.
A novel method of producing injection molded parts with a foamed structure has been developed. It has been named supercritical fluid‐laden pellet injection molding foaming technology (SIFT). Compared with conventional microcellular foaming technologies, it lowers equipment costs without sacrificing the production rate, making it a good candidate for mass producing foamed injection molded parts. Both N2 and CO2 can be suitably used in this process as the physical blowing agent. However, due to their distinct physical properties, it is necessary to understand the influence of their differences over the process and the outcomes. Comparisons were made in this study between using CO2 and N2 as the blowing agents in terms of the part morphologies, as well as the shelf life and gas desorption process of the gas‐laden pellets. After gaining a good understanding of the SIFT process and the gas‐laden pellets, a novel foam injection molding approach combining the SIFT process with microcellular injection molding was proposed in this study. Both N2 and CO2 can be introduced into the same foaming process as the coblowing agents in a two‐step manner. Using an optimal content ratio for the blowing agents, as well as the proper sequence of introducing the gases, foamed parts with a much better morphology can be produced by taking advantage of the benefits of both blowing agents. In this study, the theoretical background is discussed and experimental results show that this combined approach leads to significant improvements in foam cell morphology for low density polyethylene, polypropylene, and high impact polystyrene using two different mold geometries. POLYM. ENG. SCI., 54:899–913, 2014. © 2013 Society of Plastics Engineers  相似文献   

12.
In injection molding, complete mold cavity filling is a design goal that has to be met 100% every time. Mold cavity filling is a complicated process which depends on many variables such as mold cavity surface temperature, injection pressure, injection speed, melt temperature, flow index of material being molded, etc. The aim of experimental investigation of the low thermal inertia molding (LTIM) [1] process is to demonstrate the feasibility of molding completely filled, thin parts at low injection pressure and injection speed without sacrificing part quality. The evaluation of the new molding concept consists of comparison of a conventionally molded thin rectangular part with an identical part molded by the LTIM process. The length of filling in the conventional cavity and in the LTIM cavity are compared at different injection pressures and injection speeds. The mold design, experimental procedure, and results of the molding are discussed in the following sections.  相似文献   

13.
The cross-section of products made with the microcellular injection molding process shows the skin layer and the core region where the formation of pores takes place. The cell size, cell density, and cell morphology were found to depend on pressure drop rate, viscosity, cell growth period, and cell coalescence. However, research on the actual mechanisms of the skin layer is rare.

Cell morphology and skin layer are of importance as a factor influencing the density and strength of microcellular injection molded parts. Especially, as size of the injection molded parts becomes large, the skin layer size changes, resulting in variation of the foaming rate. Therefore, there is the need to study factors that influence the formation of the skin layer and its thickness.

This research proposes a hypothesis on the mechanism of the skin layer formation in microcellular injection molding process and addresses factors influencing skin layer thickness. In addition, the experimental design method was utilized to identify the factors, and the variation in physical properties with skin layer thickness was reported.  相似文献   

14.
Jungjoo Lee  Eugene Dougherty 《Polymer》2011,52(6):1436-1446
Microcellular injection molding is the manufacturing method used for producing foamed plastic parts. Microcellular injection molding has many advantages including material, energy, and cost savings as well as enhanced dimensional stability. In spite of these advantages, this technique has been limited by its propensity to create parts with surface defects such as a rough surface or gas flow marks. Methods for improving the surface quality of microcellular plastic parts have been investigated by several researchers. This paper describes a novel method for achieving swirl-free foamed plastic parts using the microcellular injection molding process. By controlling the cell nucleation rate of the polymer/gas solution through material formulation and gas concentration, microcellular injection molded parts free of surface defects were achieved. This paper presents the theoretical background of this approach as well as the experimental results in terms of surface roughness and profile, microstructures, mechanical properties, and dimensional stability.  相似文献   

15.
Flow‐induced orientation of the conductive fillers in injection molding creates parts with anisotropic electrical conductivity where through‐plane conductivity is several orders of magnitude lower than in‐plane conductivity. This article provides insight into a novel processing method using a chemical blowing agent to manipulate carbon fiber (CF) orientation within a polymer matrix during injection molding. The study used a fractional factorial experimental design to identify the important processing factors for improving the through‐plane electrical conductivity of plates molded from a carbon‐filled cyclic olefin copolymer (COC) containing 10 vol% CF and 2 vol% carbon black. The molded COC plates were analyzed for fiber orientation, morphology, and electrical conductivity. With increasing porosity in the molded foam part, it was found that greater out‐of‐plane fiber orientation and higher electrical conductivity could be achieved. Maximum conductivity and fiber reorientation in the through‐plane direction occurred at lower injection flow rate and higher melt temperature. These process conditions correspond with foam flow during filling of the mold cavity, indicating the importance of shear stress on the effectiveness of a fiber being rotated out‐of‐plane during injection molding. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

16.
A series of microcellular poly (phenylene sulfide) (PPS) foams were prepared by Mucell injection molding. The cell structure, mechanical properties, crystallization behavior and dielectric property of microcellular PPS foams were systemically investigated. The results showed that the longer the length of flow passage of injection mold, the larger cell size of microcellular PPS foams. The injection parameter of shot size played an important role in relative density of microcellular PPS foams. When the relative density of microcellular PPS foam reached to 0.658, the tensile strength, flexural strength and impact strength of PPS foam materials achieved 10.82 MPa, 52.99 MPa and 0.305 J/cm2, respectively. Meanwhile, with the relative density decreasing, the dielectric constant of PPS foam materials reduced, while the volume resistivity of its uprated.  相似文献   

17.
针对耳罩圈注塑件填充不足和熔接痕的缺陷问题,本文从注塑模具浇注系统分析入手,找出存在的问题,制订出改正措施,并最终解决了这些缺陷问题;在针对使用一模六腔模具成型的护盖注塑件存在缩痕缺陷的问题,通过采用了控制流入模具型腔熔体量平衡的方法,最终达到了消除注塑件缺陷的目的;针对薄壁壳体注塑件变形等缺陷的问题,则采用了脱件板方...  相似文献   

18.
通过微孔发泡注射成型和传统注射成型定量对比分析,系统分析了两种成型在翘曲变形、体积收缩、残余应力、温度场分布等方面的本质区别,并基于流变学理论,揭示了微孔发泡注射成型的成型机理。结果表明,微孔发泡注射成型的翘曲变形、残余应力、成型压力和成型时间明显小于传统注射成型的,且微孔发泡注射成型的翘曲变形和残余应力随着开始发泡的熔体预填充体积分数减小而减小,微孔发泡注射成型的熔体温度在浇口附近低于传统注射成型熔体温度,而在远离浇口处则要高。  相似文献   

19.
One of the problems encountered in fluid‐assisted injection‐molded parts is the gas or water “fingering” phenomenon, in which gas (water) bubbles penetrate nonuniformly into the core of the parts and form finger‐shape branches. Severe fingerings can lead to significant reductions in part stiffness. This study investigated the fingering phenomenon in fluid‐assisted injection‐molded disk parts. Experiments were carried out on a reciprocating injection‐molding machine equipped with gas‐ and water‐injection units. The material used was virgin polypropylene. A disk cavity with two different thicknesses was used for all experiments. The effects of various processing parameters on the fingering were examined. It was found that the melt short shot size and mold temperature were the principal parameters affecting the formation of part fingerings. In addition, the formation mechanism of part fingerings has also been proposed to better understand the formation of part fingerings. It has been shown that the fluid‐assisted filling process is an unstable system by nature. Any small perturbation by material viscosity or by temperature gradient can trigger the unbalance of gas (water) penetrations in the parts and result in fingerings. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

20.
The effects of submicron core‐shell rubber (CSR) particles, nanoclay fillers, and molding parameters on the mechanical properties and cell structure of injection‐molded microcellular polyamide‐6 (PA6) composites were studied. The experimental results of PA6 nanocomposites with 5.0 and 7.5 wt% nanoclay loadings and of CSR‐modified PA6 composites with 0.5 and 3.1 wt% CSR loadings were compared to their neat resin counterparts. This study found that nanoclay was more efficient in promoting a smaller cell size, larger cell density, and higher tensile strength for microcellular injection molding parts. A higher nanoclay loading led to more brittle behavior for microcellular parts. It was found that a proper amount of CSR particles could be added to the microcellular injection‐molded PA6 to reduce the cell size, increase the cell density, and enhance the toughness of the molded part. However, CSR particles were less effective cell nucleation agents as compared to nanoclay for producing desirable cell structures, and a higher CSR loading was found to have diminishing effects on the process and on the properties of the parts. POLYM. ENG. SCI., 45:773–788, 2005. © 2005 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号