首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different amounts of multiwalled carbon tubes (MWCNTs) were incorporated into an epoxy resin based on diglycidyl ether of bisphenol A and both epoxy precursor and composite were cured with 4,4′‐diamino diphenyl sulfone. Transmission and scanning electron microscopy demonstrated that the carbon nanotubes are dispersed well in the epoxy matrix. Differential scanning calorimetry measurements confirmed the decrease in overall cure by the addition of MWCNTs. A decrease in volume shrinkage of the epoxy matrix caused by the addition of MWCNTs was observed by pressure–volume–temperature measurements. Thermomechanical and dynamic mechanical analysis were performed for the MWCNT/epoxy composites, showing that the Tg was slightly affected, whereas the dimensional stability and stiffness are improved by the addition of MWCNTs. Electrical conductivity measurements of the composite samples showed that an insulator to conductor transition takes place between 0.019 and 0.037 wt % MWCNTs. The addition of MWCNTs induces an increase in both impact strength (18%) and fracture toughness (38%) of the epoxy matrix with very low filler content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Since the development of carbon nanotubes (CNTs) in 1991, they have received much attention with improved mechanical, thermal, and electrical properties of their composites compared to common polymer composites. The CNTs are currently used to increase the modulus of common thermoplastics and thermosets, including urethanes and epoxies. The CNTs are difficult to disperse within any media because of limited chemical reactivity and potential agglomeration in their “as grown” state. This study evaluated the effect of incorporating bundled and unbundled CNTs at different concentrations into Polyurethane/CNT/woven fiber reinforced composites. Optical microscopy and atomic force microscopy (AFM) characterized the dispersion of CNTs within the polymer matrix in injection molded CNT/polyurethane composites. Polyurethane/CNT/woven fiber reinforced composite plaques were prepared and then characterized by mechanical compression testing. Optical microscopy and AFM qualitatively determined a decreased agglomerate size resulting in improved mechanical properties. Results of this study show significant differences in yield stress, stress at failure, and modulus of elasticity within the various treatments. No significant differences were found for yield strain, strain at failure, and toughness. However, the conservativeness of the statistical model warrants further investigation for strain at failure and toughness with possible interaction effects of CNT concentration for each composite. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
The tensile strength of notched composites is an important factor for composite structural design. However, no literature is available on the notch sensitivity of self‐reinforced polymer composites. In this study, self‐reinforced recycled poly (ethylene terephthalate) (srrPET) composites were produced by film stacking from fabrics composed of double covered uncommingled yarns (DCUY). Composite specimens were subjected to uniaxial tensile, flexural, and Izod impact tests and the related results compared with earlier ones achieved on srPET composites reinforced with nonrecycled technical PET fibers. Effects of open circular holes on the tensile strength of srrPETs were studied at various width‐to‐hole diameter (W/D) ratios of the specimens. In the open hole tensile (OHT) measurements bilinear (yielding followed by post‐yield hardening) stress–strain curves were recorded. The srrPET composites had extremely high yield strength retention (up to 142%) and high breaking strength retention (up to 81%) due to the superior ductile nature of the srrPETs, which induces plastic yielding near the hole thereby reducing the stress concentration effect. The results proved that srrPET composites are tough, ductile notch‐insensitive materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43682.  相似文献   

4.
In this work, multi‐walled carbon nanotubes (MWCNT) and poly(methyl methacrylate) (PMMA) pellets were compounded via corotating twin‐screw extruder. The produced MWCNT/PMMA nanocomposite pellets were injection molded. The effect of MWCNT concentration, injection melt temperature and holding pressure on mechanical properties of the nanocomposites were investigated. To examine the mechanical properties of the MWCNT/PMMA nanocomposites, tensile test, charpy impact test, and Rockwell hardness are considered as the outputs. Design of experiments (DoE) is done by full factorial method. The morphology of the nanocomposites was performed using scanning electron microscopy (SEM). The results revealed when MWCNT concentration are increased from 0 to 1.5 wt %, tensile strength and elongation at break were reduced about 30 and 40%, respectively, but a slight increase in hardness was observed. In addition, highest impact strength belongs to the nanocomposite with 1 wt % MWCNT. This study also shows that processing condition significantly influence on mechanical behavior of the injection molded nanocomposite. In maximum holding pressure (100 bar), the nanocomposites show highest tensile strength, elongation, impact strength and hardness. According to findings, melt temperature has a trifle effect on elongation, but it has a remarkable influence on tensile strength. In the case of impact strength, higher melt temperature is favorable. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43738.  相似文献   

5.
A carbon nanotube (CNT)/poly(methyl methacrylate) (PMMA)/ultrahigh molecular weight polyethylene (UHMWPE) composite containing a double‐segregated structure was formalized by means of a facile mechanical mixing technology. In the composite, the CNTs were decorated on the surfaces of PMMA granules, and the CNTs decorated granules formed the continuous segregated conducting layers at the interfaces between UHMWPE particles. Morphology observations confirmed the formation of a specific double‐segregated CNT conductive network, resulting in an ultralow percolation threshold of ~0.2 wt %. The double‐segregated composite containing only 0.8 wt % CNT loading exhibited a high electrical conductivity of ~0.2 S m?1 and efficient electromagnetic shielding effectiveness of ~19.6 dB, respectively. The thermal conductivity, temperature‐resistivity behaviors, and mechanical properties of the double‐segregated composites were also studied. This work provided a novel conductive network structure to attain a high‐performance conducting polymer composite at low filler loadings. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39789.  相似文献   

6.
Multiwalled carbon nanotubes (MWCNTs) were melt‐mixed in a conical twin‐screw extruder with a random copolymer of ethylene and tetrafluoroethylene. Surprisingly, the electrical percolation threshold of the resultant composites was quite low; ~0.9 wt %. In fact, this value is as low or lower than the value for most MWCNT/semicrystalline polymer composites made with roughly equivalent aspect ratio tubes mixed in a similar manner, for example, melt mixing. This low percolation threshold, suggestive of good dispersion, occurred even though the polymer surface energy is quite low which should make tubes more difficult to disperse. Dynamic mechanical measurements confirmed the rather low percolation threshold. The effect of nanotubes on crystallization kinetics was quite small; suggesting perhaps that a lack of nucleation which in turn reduces/eliminates an insulating crystalline polymer layer around the nanotubes might explain the low percolation threshold. Finally, the modulus increased with the addition of nanotubes and the strain at break decreased. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41052.  相似文献   

7.
Blends of poly(phenylene sulfide) (PPS) and recycled poly(ether ether ketone) (r‐PEEK) were prepared using a twin‐screw extruder. The carbon nanotube (CNT) added to the blends not only improved the compatibility of the two polymers, but also affected the morphology of the immiscible PPS/r‐PEEK blends. R‐PEEK always forms the dispersed phase and PPS the continuous phase in such blends. In the composite, CNT particles were observed in the PPS phase, mostly distributes in the interface between PPS and PEEK. The results show that r‐PEEK improves the impact and tensile strength of PPS, but does not provide nucleation effect on PPS. However, CNT improved the flexural modulus of PPS/r‐PEEK blends and promoted the crystallization of r‐PEEK rather than that of PPS. The prepared PPS/r‐PEEK blends provided larger electrical conductivity than neat polymers. Adding 20 wt % CNT to blend resulted in composite with the minimum volume resistivity, a reduction of four orders of magnitude, compared with that of the neat blend. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42497.  相似文献   

8.
A kind of hydrophilic nano‐SiO2 was applied to poly(ethylene terephthalate)/polyamide‐6 (PA‐6) blends. Melt‐blended composites were prepared at various component ratios and different nano‐SiO2 levels. Mechanical, morphological, dynamic mechanical, and thermal tests were carried out to characterize the properties, morphology, and compatibilization of the composites. Increased impact strength, tensile strength, and modulus were observed by adding nano‐SiO2 particles in the blends. The nano‐SiO2 particles were found to be preferentially dispersed in PA‐6, resulting in an increase of glass transition temperature and crystallization of PA‐6. The mechanism of morphology and properties changes was discussed based on the selective dispersion of nano‐SiO2 particles in the blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2288–2296, 2007  相似文献   

9.
The use of interleaved polyethylene terephthalate (PET) veils to increase the interlaminar fracture toughness of glass fiber‐reinforced, low‐styrene emission, unsaturated polyester resin composites, was investigated. PET, being chemically similar to the unsaturated polyester resin, was expected to exhibit good wetting and strong interaction with the matrix. Composite laminates were manufactured by hand lay‐up, with the veil content varying up to 7%. The effects of PET veils on the interlaminar shear strength, flexural strength, flexural modulus, glass transition temperature, damping parameters, and Mode‐I interlaminar fracture toughness of the composite were studied. The veils were found to enhance most of these properties, with only minor negative effects on flexural stiffness and Tg. The PET/resin bonding did indeed prove to be strong, but the enhancement of fracture toughness was not as much as expected, because of the weaker glass/resin interface providing an alternative crack propagation path. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42877.  相似文献   

10.
In this article, polypropylene (PP)/clay/carbon nanotube (CNT) composites were prepared via a solution blending method. Sound transmission loss (STL), determined with an impedance tube, was used to characterize their soundproofing properties. The STL for the PP/4.8 wt % clay/0.5 wt % CNT composite was about 15–21 dB higher than that for pure PP at high frequencies (3200–6400 Hz) and about 8–14 dB higher at low frequencies (580–620 Hz). X‐ray diffraction (XRD) and transmission electron microscopy (TEM) were used to study the crystallinity and the microstructure. A synergistic effect on the STL was established between the structure of the homogeneous dispersion and strong interfacial adhesion. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Thermoplastic nanocomposites, based on high‐density polyethylene, polyamide 6, polyamide 66, poly(butylene terephthalate), or polycarbonate and containing multiwalled carbon nanotubes (CNTs), were compounded with either neat CNTs or commercial CNT master batches and injection‐molded for the evaluation of their electrical, mechanical, and thermal properties. The nanocomposites reached a percolation threshold within CNT concentrations of 2–5 wt %; however, the mechanical properties of the host polymers were affected. For some nanocomposites, better properties were achieved with neat CNTs, whereas for others, master batches were better. Then, polycarbonate and poly(butylene terephthalate), both with a CNT concentration of 3 wt %, were injection‐molded with a screening design of experiments (DOE) to evaluate the effects of the processing parameters on the properties of the nanocomposites. Although only a 10‐run screening DOE was performed, such effects were clearly observed. The volume resistivity was significantly dependent on the working temperature and varied up to 4 orders of magnitude. Other properties were also dependent on the processing parameters, albeit in a less pronounced fashion. Transmission electron microscopy indicated that conductive samples formed a percolation network, whereas nonconductive samples did not. In conclusion, injection‐molding parameters have a significant impact on the properties of polymer/CNT nanocomposites, and these parameters should be optimized to yield the best results. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
New novel fire‐resistant and heat‐resistant cyclotriphosphazene‐containing polyimide resins were prepared in situ by the polymerization of (p‐aminophenoxy)(phenoxy)cyclotriphosphazenes with 3,3′,4,4′‐benzophenonetetracarboxylic acid or 3,3′,4,4′‐diphenylsulfonetetracarboxylic acid and a crosslink agent, 5‐norbornene‐2,3‐dicarboxylic acid and were used as polymer matrix compositing with a woven carbon fiber to prepare nadic‐end‐capped cyclotriphosphazene‐containing polyimide/carbon fiber composites. The thermal stability, flame retardance, morphology of the surface fracture, and some physical properties of the composites were investigated by thermogravimetric analysis, scanning electron microscopy, and a material testing system, respectively. The composites had good thermal stability, flame retardance, and mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 810–818, 2003  相似文献   

13.
This study uses the solution mixing method to combine plasticized polyvinyl alcohol (PVA) as a matrix, and multiwalled carbon nanotubes (MWCNTs) as reinforcement to form PVA/MWCNTs films. The films are then laminated and hot pressed to create PVA/MWCNTs composites. The control group of PVA/MWCNTs composites is made by incorporating the melt compounding method. Diverse properties of PVA/MWCNTs composites are then evaluated. For the experimental group, the incorporation of MWCNTs improves the glass transition temperature (Tg), crystallization temperature, Tc), and thermal stability of the composites. In addition, the test results indicate that composites containing 1.5 wt % of MWCNTs have the maximum tensile strength of 51.1 MPa, whereas composites containing 2 wt % MWCNTs have the optimal electrical conductivity of 2.4 S/cm, and electromagnetic shielding effectiveness (EMI SE) of ?31.41 dB. This study proves that the solution mixing method outperforms the melt compounding method in terms of mechanical properties, dispersion, melting and crystallization behaviors, thermal stability, and EMI SE. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43474.  相似文献   

14.
Multi‐walled carbon nanotube/polypropylene composites (PPCNs) were prepared by melt compounding. The linear viscoelastic properties, nonisothermal crystallization behavior, and kinetics of PPCNs were, respectively, investigated by the parallel plate rheometer, differential scanning calorimeter (DSC), X‐ray diffractometer (XRD), and polarized optical microscope (POM). PPCNs show the typical nonterminal viscoelastic response because of the percolation of nanotubes. The rheological percolation threshold of about 2 wt % is determined using Cole‐Cole method. Small addition of nanotube can highly promote crystallization of PP matrix because of the heterogeneous nucleating effect. With increasing nanotube loadings, however, the crystallization rate decreases gradually because the mobility of PP chain is restrained by the presence of nanotube, especially at high loading levels. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

15.
Multi-walled carbon nanotube (MWCNT)/C/polystyrene (PS) composite materials were prepared by in situ polymerization of monomer in preformed MWCNT/C foams. MWCNT/C foams were preformed using polyurethane foam as template. The preformed MWCNT/C foams had a more continuous conductive structure than the carbon nanotube networks formed by free assembly in composites. The structure of the MWCNT/C foam network was characterized with scanning electron microscopy. The MWCNT/C/PS composites have an electric conductivity higher than 0.01 S/cm for a filler loading of 1 wt.%. Enhancement of thermal conductivity and mechanical properties by the preformed MWCNT/C foam were also observed.  相似文献   

16.
Adding conductive carbon fillers to insulating thermoplastic polymers increases the resulting composite's electrical conductivity. Carbon nanotubes (CNTs) are very effective at increasing composite electrical conductivity at low loading levels without compromising composite tensile and flexural properties. In this study, varying amounts (2–8 wt %) of CNTs were added to polycarbonate (PC) by melt compounding, and the resulting composites were tested for electrical conductivity (1/electrical resistivity), thermal conductivity, and tensile and flexural properties. The percolation threshold was less than 1.4 vol % CNT, likely because of CNTs high aspect ratio (1000). The addition of CNT to PC increased the composite electrical and thermal conductivity and tensile and flexural modulus. The 6 wt % (4.2 vol %) CNT in PC resin had a good combination of properties for electrical conductivity applications. The electrical resistivity and thermal conductivity were 18 Ω‐cm and 0.28 W/m · K, respectively. The tensile modulus, ultimate tensile strength (UTS), and strain at UTS were 2.7 GPa, 56 MPa, and 2.8%, respectively. The flexural modulus, ultimate flexural strength, and strain at ultimate flexural strength were 3.6 GPa, 125 MPa, and 5.5%, respectively. Ductile tensile behavior is noted in pure PC and in samples containing up to 6 wt % CNT. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Tzong-Ming Wu  Yen-Wen Lin 《Polymer》2006,47(10):3576-3582
This study reports the synthesis of doped polyaniline in its emeraldine salt form (PANI-ES) with carboxylic acid and acylchloride groups contained multi-walled carbon nanotubes (designated as c-MWNTs and a-MWNTs) by in situ polymerization. Both Raman spectra and HRTEM images indicate that carboxylic acid and acylchloride groups formed at both ends and on the sidewalls of the MWNTs. Based on the π-π* electron interaction between aniline monomers and functionalized MWNT and hydrogen bonding interaction between the amino groups of aniline monomers and the carboxylic acid/acylchloride groups of functionalized MWNT, aniline molecules were adsorbed and polymerized on the surface of MWNTs. Structural analysis by FESEM and HRTEM showed that PANI-ES/c-MWNT and PANI-ES/a-MWNT composites are core (c-MWNT or a-MWNT)- shell (doped-PANI-ES) tubular structures with diameters of several tens to hundreds of nanometers, depending on the PANI content. The conductivities of 0.5 wt% functionalized MWNT containing PANI-ES/c-MWNT and PANI-ES/a-MWNT composites are 60-70% higher than that of PANI without MWNT.  相似文献   

18.
This work was aimed at understanding how the injection‐molding temperature affected the final mechanical properties of in situ composite materials based on polycarbonate (PC) reinforced with a liquid‐crystalline polymer (LCP). To that end, the LCP was a copolyester, called Vectra A950 (VA), made of 73 mol % 4‐hydroxybenzoic acid and 27 mol % 6‐hydroxy‐2 naphthoic acid. The injection‐molded PC/VA composites were produced with loadings of 5, 10, and 20 wt % VA at three different processing barrel temperatures (280, 290, and 300°C). When the composite was processed at barrel temperatures of 280 and 290°C, VA provided reinforcement to PC. The resulting injection‐molded structure had a distinct skin–core morphology with unoriented VA in the core. At these barrel temperatures, the viscosity of VA was lower than that of PC. However, when they were processed at 300°C, the VA domains were dispersed mainly in spherical droplets in the PC/VA composites and thus were unable to reinforce the material. The rheological measurements showed that now the viscosity of VA was higher than that of PC at 300°C. This structure development during the injection molding of these composites was manifested in the mechanical properties. The tensile modulus and tensile strength of the PC/VA composites were dependent on the processing temperature and on the VA concentrations. The modulus was maximum in the PC/VA blend with 20 wt % VA processed at 290°C. The Izod impact strength of the composites tended to markedly decrease with increasing VA content. The magnitude of the loss modulus decreased with increasing VA content at a given processing temperature. This was attributed to the anisotropic reinforcement of VA. Similarly, as the VA content increased, the modulus and thus the reinforcing effect were improved comparatively with the processing temperature increasing from 280 to 290°C; this, however, dropped in the case of composites processed at 300°C, at which the modulus anisotropy was reduced. Dynamic oscillatory shear measurements revealed that the viscoelastic properties, that is, the shear storage modulus and shear loss modulus, improved with decreasing processing temperatures and increasing VA contents in the composites. Also, the viscoelastic melt behavior (shear storage modulus and shear loss modulus) indicated that the addition of VA changed the distribution of the longer relaxation times of PC in the PC/VA composites. Thus, the injection‐molding processing temperature played a vital role in optimizing the morphology‐dependent mechanical properties of the polymer/LCP composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
林香萍  管萍  胡小玲  唐一梅 《现代化工》2011,31(9):14-16,18
与传统的溶剂相比,离子液体作为一种新型的绿色环保溶剂及优良电解质,在碳纳米管复合材料制备中得到了广泛的应用.对近年来利用离子液体合成出的碳纳米管/金属复合材料、碳纳米管/纤维素复合材料、碳纳米管/聚合物复合材料,以及在高分子离子液体、离子液凝胶中制备的碳纳米管复合材料进行了综述,介绍它们的优势及特点.对今后离子液体在碳...  相似文献   

20.
In this study, a series of T300 carbon fiber‐reinforced polyimide (CFRPI) composites were prepared by laminating premolding polyimide (PI) films with unidirectional carbon fiber (CF) layers. On the basis of PI systems design, the effect of CF volume fraction, processing conditions, and PI molecular structure on the properties of CFRPI composites was studied in detail. In addition, two kinds of nano‐particles, including carbon nano‐tube (CNT) and SiO2 were filled into the premolding PI films with different concentrations. And the effect of nano‐particles on the properties of CFRPI composites was also investigated. The surface characteristic of T300 CF was measured by X‐ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The properties of premolding PI film and CFRPI composites were measured by dynamic mechanical analysis (DMTA), SANS testing machine, scanning electron microscopy (SEM), and so forth. These experimental results showed that the properties of CFRPI composites were mainly affected by the premolding PI film and molding condition. The change of CF volume fraction from 55% to 65% took little effect on the mechanical properties of CFRPI composites. In addition, the incorporation of nano‐particle SiO2 could further improve the properties of CFRPI composites, but CNT hardly improved the properties of CFRPI composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 646–654, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号