首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of polylactic acid (PLA) nonwovens were prepared by the melt blowing process using micro and nano dies. The nonwovens were characterized for structural, thermal, and mechanical properties. These properties varied with the type of die, airflow, and die to collector distance (DCD). The mean pore size for PLA microfiber ranged between 1.82 and 10.48 micrometers, and nanofiber nonwovens ranged between 452 and 818 nanometers. The tensile modulus and strength of PLA nonwovens increased with airflow at a given DCD, but decreased with increased DCD for a given airflow. Thermograms from calorimetry showed microfiber mats had a larger composition of beta‐form crystals than the nanofiber mats. The results showed that a wide range of nonwovens can easily be generated with properties tailored to the specific application. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40593.  相似文献   

2.
In this work, the fabricated polylactic acid (PLA) and hybrid natural fiber (NF) biocomposites via a melt extrusion method were investigated. NFs from locally grown plants were utilized as fillers. Polyethene glycol (PEG) was used as the plasticizer to improve the processability of the PLA. The effect of PLA/NF biocomposite processing was assessed by mechanical characterization (tensile, modulus, strain at break, and impact tests), and thermal properties (thermogravimetric analysis and differential scanning calorimetry [DSC] analysis). The dynamic mechanical analysis (DMA), and thermo-mechanical analysis (TMA) of the samples were also analyzed. The mechanical properties of PLA/NF biocomposites improved as compared with that of PLA. The DMA findings show that the storage modulus and loss modulus exhibited a slight reduction for PLA/NF biocomposites compared with the PLA sample. In opposite, the glass transition temperature (Tg) from DSC thermogram results showed no obvious changes in values compared with the PLA sample. Furthermore, the findings of TMA showed a significant decrease in coefficient of thermal expansion values of PLA/NF biocomposites compared with those of PLA samples. The overall findings from this work indicated that PLA/NF biocomposites have the potential to make novel biocomposites and suitable for further application especially in biomedical applications due to its good stiffness, tensile strength, and dimensional stability.  相似文献   

3.
Environmentally friendly, biodegradable composites were prepared via overmolding of poly(lactic acid) (PLA) onto PLA/jute-mat, named as “ecosheets,” reinforced continuous fiber composite sheets. Film stacking procedure was used to prepare ecosheets via using a hot-press. The fiber orientation was changed as −45°/+45° and 0°/0°. −45°/+45° orientation exhibited higher properties as compared to 0°/0° for ecosheets; therefore, this construction was used to produce overmolded composites (OMCs). The mechanical tests showed that flexural modulus and strength of OMCs were improved in comparison to neat PLA. The dynamic mechanical analysis exhibited that the thermomechanical resistance of PLA was enhanced for OMCs. Scanning electron microscopy investigation showed that the jute/PLA interphase needs to be improved to further increase the properties. It was concluded that one of the biggest advantages of this novel technique was the increase of mechanical properties of PLA without altering the density. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48692.  相似文献   

4.
This article reports an esterified polyvinyl alcohol (PVA)-lignin resin that is applicable for natural fiber reinforced polymer composites. To meet the requirement for the composites, a biopolymer-based resin is necessary, which should well interact with the natural fiber with good waterproof behavior. By mimicking the relationship between cellulose, lignin and hemicellulose in wood, the esterified PVA-lignin resin with maleic acid is provided. The preparation and characterization of the environment-friendly resin are illustrated in this article. 180 °C of esterification reaction temperature and 40% of maleic acid contents are shown to be an optimum condition for the preparation of the resin. The esterified PVA-lignin resin exhibits 13, 31, and 55% increase of its tensile strength, toughness, and failure strength, respectively. The water contact angle of the esterified PVA-lignin resin is improved from 0 to 57°. The prepared resin is originally thermoplastic composite and it turned to be a thermoset resin by the esterification reaction at 180 °C, which is beneficial for composite processing. The developed resin is applicable for environment-friendly and high strength-natural fiber reinforced polymer composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48836.  相似文献   

5.
In this study, acrylated epoxidized flaxseed oil (AEFO) resin is synthesized from flaxseed oil, and flax fiber reinforced AEFO biocomposites is produced via a vacuum‐assisted resin transfer molding technique. Different amounts of flax fiber and styrene are added to the resin to improve its mechanical and physical properties. Both flax fiber and styrene improve the mechanical properties of these biocomposites, but the flexural strength decreases with an increase in styrene content. The mass increase during water absorption testing is less than 1.5% (w/w) for all of the AEFO‐based biocomposites. The density of the AEFO resin is 1.166 g/cm3, which increases to 1.191 g/cm3 when reinforced with 10% (w/w) flax fiber. The flax fiber reinforced AEFO‐based biocomposites have a maximum tensile strength of 31.4 ± 1.2 MPa and Young's modulus of 520 ± 31 MPa. These biocomposites also have a maximum flexural strength of 64.5 ± 2.3 MPa and a flexural modulus of 2.98 ± 0.12 GPa. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41807.  相似文献   

6.
In this article, we report the morphology and thermal, mechanical and physical properties of poly(3‐hydroxybutyrate) (PHB)/curaua composites containing triethyl citrate (TEC) as the plasticizer. The composites were prepared by mechanical mixing using pristine and chemically treated fibers (10 wt %) and TEC (30 wt %) and characterized by differential scanning calorimetry, dynamic mechanical analysis, X‐ray diffraction, small angle X‐ray scattering, polarized optical microscopy, scanning electron microscopy, tensile tests, impact resistance test, thermodilatometry, and thermal conductivity measurements. The curaua fibers acted as nucleating agent and strongly influenced the morphology of the crystalline phase of PHB, increasing the lamella thickness, decreasing the crystal size and inducing spherulite–axialite transition. These characteristics of the PHB crystalline phase determined all the properties of the composites. The tensile properties of the composites were comparable with those of neat PHB, while the impact resistance of composites was comparable with that of plasticized PHB. The higher heat capacity and thermal expansion coefficient and the lower thermal conductivity of the composites compared with neat PHB reflect the morphological changes in the PHB crystalline phase. The strategy of developing a green polymeric material from ecofriendly components exhibiting a good balance of properties by combining curaua fibers, TEC, and PHB was successful. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44676.  相似文献   

7.
Fiber-reinforced composites based on natural fibers are promising alternatives for materials made of metal or synthetic polymers. However, the inherent inhomogeneity of natural fibers limits the quality of the respective composites. Man-made cellulose fibers (MMCFs) prepared from cellulose solutions via wet or dry-jet wet spinning processes can overcome these limitations. Herein, MMCFs are used to prepare single fiber epoxy composites and UD composites with 20, 30, 40, and 60 wt% fiber loads. The mechanical properties increase gradually with fiber loading. Young's modulus is improved three times while tensile strength doubles at a loading of 60 wt%. Raman spectroscopy is employed to follow conformational changes of the cellulose chains within the fibers upon mechanical deformation of the composites. The shift of the characteristic Raman band under strain indicates the deformation mechanisms in the fiber. Provided stress transfer occurs through the interface, it is a direct measure of the fiber-matrix interaction, which is investigated herein. The shift rate of the 1095 cm−1 band decreases in single fiber composites compared to the neat fibers and continues to decrease as the fiber loading increased.  相似文献   

8.
In the present work, different compatibilizers, namely polyethylene‐graft‐maleic anhydride (PE‐g‐MA), polypropylene‐graft‐maleic anhydride (PP‐g‐MA), and polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene‐graft‐maleic anhydride (SEBS‐g‐MA) were used on green composites derived from biobased polyethylene and peanut shell (PNS) flour to improve particle–polymer interaction. Composites of high‐density polyethylene/peanut shell powder (HDPE/PNS) with 10 wt % PNS flour were compatibilized with 3 wt % of the abovementioned compatibilizers. As per the results, PP‐g‐MA copolymer lead to best optimized properties as evidenced by mechanical characterization. In addition, best particle–matrix interface interactions with PP‐g‐MA were observed by scanning electron microscopy (SEM). Subsequently HDPE/PNS composites with varying PNS flour content in the 5–30 wt % range with PP‐g‐MA compatibilizer were obtained by melt extrusion and compounding followed by injection molding and were characterized by mechanical, thermal, and morphological techniques. The results showed that PNS powder, leads to an increase in mechanical resistant properties (mainly, flexural modulus, and strength) while a decrease in mechanical ductile properties, that is, elongation at break and impact absorbed energy is observed with increasing PNS flour content. Furthermore, PNS flour provides an increase in thermal stability due to the natural antioxidant properties of PNS. In particular, composites containing 30 wt % PNS powder present a flexural strength 24% and a flexural modulus 72% higher than the unfilled polyethylene and the thermo‐oxidative onset degradation temperature is increased from 232 °C up to 254 °C thus indicating a marked thermal stabilization effect. Resultant composites can show a great deal of potential as base materials for wood plastic composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43940.  相似文献   

9.
Microfibers and nanofibers were prepared from macro banana fibers by a steam explosion process. The fiber surface of chemically modified and unmodified banana fibers was investigated by atomic force microscopy, the studies revealed a reduction in fiber diameter during steam explosion followed by acid treatments. Zeta potential measurements were carried out to measure the acidic property of the fiber surface; the surface acidity was found to be increased from macrofibers to nanofibers. The thermal behavior of macrofibers, microfibers, and nanofibers were compared. Substantial increase in thermal stability was observed from macroscale to nanoscale, which proved the high thermal stability of nanofibers to processing conditions of biocomposite preparation. The composition of the fibers before and after steam explosion and acid hydrolysis were also analyzed using FT‐IR. It was found that the isolation of cellulose nanofibres occurs in the final step of the processing stage. Further macrocomposites, microcomposites, and nanocomposites were prepared and mechanical properties such as tensile, flexural and impact properties were measured and compared. The composites with small amount of nanofibers induces a significant increase in tensile strength (142%), flexural strength (280%), and impact strength (133%) of the phenol formaldehyde (PF) matrix, this increase is due to the interconnected web like structure of the nanofibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1239‐1246, 2013  相似文献   

10.
Fully bio‐based and biodegradable composites were compression molded from unidirectionally aligned sisal fiber bundles and a polylactide polymer matrix (PLLA). Caustic soda treatment was employed to modify the strength of sisal fibers and to improve fiber to matrix adhesion. Mechanical properties of PLLA/sisal fiber composites improved with caustic soda treatment: the mean flexural strength and modulus increased from 279 MPa and 19.4 GPa respectively to 286 MPa and 22 GPa at a fiber volume fraction of Vf = 0.6. The glass transition temperature decreased with increasing fiber content in composites reinforced with untreated sisal fibers due to interfacial friction. The damping at the caustic soda‐treated fibers‐PLLA interface was reduced due to the presence of transcrystalline morphology at the fiber to matrix interface. It was demonstrated that high strength, high modulus sisal‐PLLA composites can be produced with effective stress transfer at well‐bonded fiber to matrix interfaces. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40999.  相似文献   

11.
Sisal fiber reinforced biocomposites are developed using both unmodified petrol based epoxy and bioresin modified epoxy as base matrix. Two bioresins, epoxidized soybean oil and epoxy methyl soyate (EMS) are used to modify the epoxy matrix for effective toughening and subsequently two layers of sisal fiber mat are incorporated to improve the mechanical and thermomechanical properties. Higher strength and modulus of the EMS modified epoxy composites reveals good interfacial bonding of matrix with the fibers. Fracture toughness parameters KIC and GIC are determined and found to be enhanced significantly. Notched impact strength is found to be higher for unmodified epoxy composite, whereas elongation at break is found to be much higher for modified epoxy blend. Dynamic mechanical analysis shows an improvement in the storage modulus for bioresin toughened composites on the account stiffness imparted by fibers. Loss modulus is found to be higher for EMS modified epoxy composite because of strong fiber–matrix interfacial bonding. Loss tangent curves show a strong influence of bioresin on damping behavior of epoxy composite. Strong fiber–matrix interface is found in modified epoxy composite by scanning electron microscopic analysis. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42699.  相似文献   

12.
The surface‐modified β‐Si3N4 whiskers were used as inorganic fillers to reinforce dental resin (Bis‐GMA/TEGDMA) matrix with filler level ranging from 0 to 60 wt %. The experimental results indicated that the fracture strength of the composites increased from 79.85 to 139.8 MPa with increasing the whiskers loading. The compressive strength, elastic modulus, and rockwell hardness all increased monotonously with increasing filler level. Furthermore, thermal cycling did not decrease the fracture strength of the composites. Moreover, the composites showed good biocompatibility to support MG63 cells adhesion and proliferation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40692.  相似文献   

13.
Poly(glycerol sebacate) (PGS) is one of the new elastomers used for soft tissue engineering, while improving its limited mechanical strength is the biggest challenge. In this work, a novel biodegradable elastomer composite PGS/cellulose nanocrystals (CNCs) was prepared by solution‐casting method and the mechanical properties, sol–gel contents, crosslink density, and hydrophilic performance were characterized. The thermal and degradation properties of composites were also investigated. Results show that the addition of CNCs into PGS resulted a significant improvement in tensile strength and modulus, as well as the crosslink density and the hydrophilicity of PGS. When the CNCs loading reached 4 wt %, the tensile strength and modulus of the composite reached 1.5 MPa and 1.9 MPa, respectively, resulting 204% and 158% increase compared to the pure PGS. Prolonging the curing time also improved the strength of both the neat PGS and PGS/CNCs composites according to the association and shift of hydroxy peaks around 3480 cm?1. DSC results indicate that the addition of CNCs improved both the crystallization capacity and moving capability of PGS molecular chain. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42196.  相似文献   

14.
Poly(lactic acid) (PLA)/barium ferrite (BaFe12O19) with different composition ratios was fabricated by magnetic composite filaments using an extrusion process for a 3D printer. The silane modified surface of BaFe12O19 was studied to observe the effect on the mechanical, morphology, thermal, and magnetic properties of magnetic composite filaments. The results showed that the silane treated surface BaFe12O19 not only enhanced the mechanical properties of magnetic composite filaments, but also improved adhesion and homogeneity between the BaFe12O19 filler and PLA matrix. Moreover, the thermal and magnetic properties of magnetic composite filaments were not obviously changed after adding silane treated surface BaFe12O19. The achievement of the magnetic composite filaments preparation with silane treated surface BaFe12O19 for the 3D printing process could become a guideline to develop and design other magnetic composites products in the near future.  相似文献   

15.
The possibility of producing carbon fiber from an industrial corn stover lignin was investigated in the present study. As‐received, high‐ash containing lignin was subjected to methanol fractionation, acetylation, and thermal treatment prior to melt spinning and the changes in physiochemical and thermal properties were evaluated. Methanol fractionation removed most of the impurities in the raw lignin and also selectively removed the molecules with high melting points. However, neither methanol fractionation nor thermal treatment rendered melt‐spinnable precursors. The precursors were highly viscous and decomposed easily at low temperatures, attributed to the presence of H, G phenolic units, and abundant hydroxycinnamate groups in herbaceous lignin. A two‐step acetylation of methanol fractionated lignin greatly improved the mobility of lignin, while enhancing the thermal stability of the precursor during melt‐spinning. Fourier Transform Infrared and 2D‐NMR analysis showed that the contents of phenolic and aliphatic hydroxyls, as well as the hydroxycinnamates, decreased in the acetylated precursors. The optimum precursor was a partially acetylated lignin with a glass transition temperature of 85 °C. Upon oxidative stabilization and carbonization, the carbon fibers with an average tensile strength of 454 MPa and modulus of 62 GPa were obtained. The Raman spectroscopy showed the ID/IG ratio of the carbon fiber was 2.53. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45736.  相似文献   

16.
17.
The purpose of the study was to obtain a composite material with the self‐reinforced structure, which processing provide increased mechanical properties. The composites used in presented work were prepared from the two types of fiber mixtures, both were based on polypropylene fibers, the difference was in used cellulose or wood flour filler. Composites were prepared using the hot compaction method. The presented research describes the effect of the composite composition and processing conditions. The results include the static tension measurements, tensile impact tests and thermal analysis, including: DSC and DMTA. The structure has been studies using the SEM observations. Results of presented studies confirm the self‐reinforcing effect in obtained hybrid composites. It provides in the comparison to the standard wood polymer composites to the higher level of material reinforcement with lower amount of natural filler. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43283.  相似文献   

18.
Polylactic acid (PLA) biocomposites were produced by a combination of extrusion and injection molding with three cellulosic reinforcements (agave, coir, and pine) and contents (10, 20, and 30%). In particular, some samples were subjected to thermal annealing (105 °C for 1 h) to modify the crystallinity of the materials. In all cases, morphological (scanning electron microscopy) and thermal (differential scanning calorimetry, dynamical mechanical thermal analysis) characterizations were related to the mechanical properties (Charpy impact, tensile and flexural tests). The results showed that annealing increased the crystallinity for all the materials produced, but different mechanical behaviors were observed depending on fiber type and content. For example, annealing increased the impact strength and flexural modulus of PLA and PLA biocomposites (agave, coir, and pine), while decreasing their flexural strength. But the main conclusion is that fiber addition combined with thermal annealing can substantially increase the thermal stability of the studied materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43750.  相似文献   

19.
In this research, additive manufacturing of polylactic acid (PLA) reinforced with keratin was studied. Keratin was obtained from Angora rabbit hair and modified with NaOH. Scanning electron microscopy (SEM) images showed that the modified surfaces were rougher than untreated surfaces. Furthermore, SEM images in the composites' fracture regions showed surface changes, associated with the nature of the reinforcement. Likewise, thermomechanical properties of the composites were attributed to the nature of the reinforcement and the type of keratin. Besides, the 3D printed composites showed higher thermal conductivity values than PLA with the addition of keratin. Cytotoxicity tests revealed an improvement in cell growth compared to the control and PLA. These results are meaningful toward the development of high thermal conductors and biocompatible composites with applications in different fields, where the use of only natural polymers is necessary.  相似文献   

20.
In this study, the enhancement of the biodegradation rate of polylactic acid (PLA) filled with commercially available soil amendment product (NTM) or a nanoclay (Cloisite 25A) were evaluated. Cloisite 25A and NTM were incorporated into PLA at 5, 10, 20 (w/w) through melt blending. Transmission electron micrographs revealed particles with a wide range of sizes that were formed by clumping of many smaller particles. The particles showed good dispersion in PLA by scanning electron microscopy. Under standard composting conditions using a standard technique for aerobic biodegradation of plastic materials, it was shown that the addition of NTM enhanced the biodegradation rate of PLA composites by 3- to 4-fold compared to neat PLA. Linear kinetics were used to obtain induction periods, half-lives, and rates of mineralization. Finally, mechanical and thermomechanical properties of these blends were compared with PLA. Published 2020. This article is a U.S. Government work and is in the public domain in the USA. J. Appl. Polym. Sci. 2020 , 137, 48939.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号