首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kraft pulp fibers were used as substrates for the grafting of poly(ε‐caprolactone) (PCL) from available hydroxyl groups through ring‐opening polymerization, targeting three different chain lengths (degree of polymerization): 120, 240, and 480. In a paper‐making process, paper‐sheet biocomposites composed of grafted fibers and neat pulp fibers were prepared. The paper sheets possessed both the appearance and the tactility of ordinary paper sheets. Additionally, the sheets were homogenous, suggesting that PCL‐grafted fibers and neat fibers were compatible, as demonstrated by both Fourier transform infrared spectroscopy microscopy and through dye‐labeling of the PCL‐grafted fibers. Finally, it was shown that the paper‐sheet biocomposites could be hot‐pressed into laminate structures without the addition of any matrix polymer; the adhesive joint produced could even be stronger than the papers themselves. This apparent and sufficient adhesion between the layers was thought to be due to chain entanglements and/or co‐crystallization of adjacent grafted PCL chains within the different paper sheets. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42039.  相似文献   

2.
Solid polymer membranes from poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐acrylic acid) (PAA) with varying doping ratios of sorbitol were prepared using the solution casting method. The films were examined with Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and AC impedance spectroscopy. The impedance measurements showed that the ionic conductivity of PVA–PAA polymer membrane can be controlled by controlled doping of sorbitol within the polymer blends. The PVA–PAA–sorbitol membranes were found to exhibit excellent thermal properties and were stable for a wide temperature range (398–563K), which creates a possibility of using them as suitable polymers for device applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Wood has limitations in strength because of its biostructural defects, including vessels. To overcome this limitation, composite materials can be innovated by breaking wood down into cellulose and lignin and reassembling them for bio‐originating strong structural materials. In this study, an ecofriendly resin was developed that was suitable for cellulose‐based composites. To overcome the low dimensional stability of lignin and to increase its interactions with cellulose, it was blended with poly(vinyl alcohol) (PVA). The PVA–lignin resin was characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, thermal analysis, mechanical tensile testing, and lap‐shear joint testing. The adhesion properties of the PVA–lignin resin increased with increasing PVA content. PVA played the role of synthetic polymer and that of linker between the cellulose and lignin, like hemicellulose does in wood. The PVA–lignin resin exhibited a high miscibility, mechanical toughness, and good adhesion properties for nanocellulose composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46655.  相似文献   

4.
Hydrogels and organogels are polymer networks that can absorb large amounts of water and organic solvent, respectively. In this study, solvent absorption into the matrices of poly(glutaric acid‐glycerol) hydrogel and organogel films amended with or without either iminodiacetic acid, sugarcane bagasse, pectin, corn fiber gum, or microcrystalline cellulose has been evaluated. Most of the starting materials used in this study, such as glycerol and the plant wall polysaccharides, are by‐products of biofuel production. Finding uses for them would further biofuel initiatives worldwide. To that end, experimental results showed that water absorption increased when using polymer films composed of additional glycerol or plant cell wall polysaccharides. The amount of solvent absorbed into the control film increased when incubated in pH 10 buffer solutions but decreased when incubated in pH 4 buffer solutions and NaCl solutions when compared with absorption of water. Incubating the polymers in solvent at elevated temperatures increased the absorption rate. It was determined that the combined effects of pKa and polarity can be used to predict solvent absorption. Dimethylsulfoxide (DMSO) could be selectively extracted from or desorbed into films from other solvents. Erosion of the polymer films in DMSO ranged from 1.9 (±0.2) to 34.7 (±3.4)%. In water, erosion ranged from 6.3 (±3.2) to 32.7 (±3.2)%. The polymer films resorbed 3.3‐ and 2.3‐fold more DMSO and water, respectively, when compared with the original amount of absorbed solvent. These materials are potentially good candidates for agricultural and medicinal applications because their ability to absorb, desorb, and erode can be tuned. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Cotton‐based chelate fibers grafted with poly(1‐vinyl‐1,2,4‐triazole) (PVTAZ) side chains were synthesized facilely by ozone‐induced graft polymerization of 1‐vinyl‐1,2,4‐triazole (VTAZ) monomer onto cotton fibers. The synthesis conditions were optimized to improve the yield and mechanical strength of the products. The obtained cotton‐g‐PVTAZ fibers were characterized and evaluated for batch adsorption of heavy metal ions from aqueous solutions. The maximum adsorption capacity of Ag(I), Pb(II), and Cu(II) on the fibers at pH 6.8 was 522, 330, and 184 mg/g, respectively. At 30% graft yield, the Young's modulus of cotton fiber increased about 26.5%, and its adsorption capacities of Ag(I), Pb(II), and Cu(II) increased about 2.6, 1.9, and 1.4 times, respectively. After washed with 0.1 mol/L HNO3 solutions, the adsorbed metal ions were eluted, and the regenerated cotton‐g‐PVTAZ fibers could be used repeatedly for water treatment. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41617.  相似文献   

6.
Nanocomposite films for food packaging applications were developed using bacterial cellulose (BC) nanofibers in different amount in a poly(vinyl alcohol)/starch (PVA/St) matrix. In search of a better method to reduce the harmful ingredients in food packaging, the cellulose nanofibers were obtained by the mechanical defibrillation of BC pellicles thus avoiding the addition of chemicals in the final packaging material. Improved mechanical performances were obtained starting from just 1% BC nanofibers in PVA/St. Atomic force microscopy images showed a uniform dispersion of BC nanofibers on the surface of nanocomposites. A twofold increase of both tensile strength and modulus was obtained for 2 wt % BC in the composite. BC nanofibers have greatly improved the barrier properties of PVA/St matrix, a twofold increase of water vapor permeability being obtained for only 2 wt % BC nanofibers in the composite film. PVA/St/2BC was proposed as a high potential material for food packaging applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45800.  相似文献   

7.
Novel electrically conducting composite materials consisting of poly(pyrrole) (PPy) nanoparticles dispersed in a poly(vinyl alcohol)‐g‐poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid‐co‐acrylonitrile) hydrogels were prepared within the polymer matrix by in situ polymerization of pyrrole. The conversion yield of pyrrole into PPy particles was determined gravimetrically while structural confirmation of the synthesized polymer was sought by Fourier Transform Infrared (FTIR) and UV‐visible spectroscopy. The morphology of PPy nanoparticles containing hydrogel matrix was investigated by Scanning Electron Microscopy (SEM) analysis. Electrical conductivity of nanocomposite hydrogels of different compositions was determined by LCR meter while electroactive behavior of nanocomposite hydrogels swollen in electrolyte solutions was investigated by effective bend angle measurements. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

8.
As a kind of reinforcing agent, the application of nanocrystalline cellulose (NCC) is widely limited in hydrophobic polymers owing to its rich hydroxyl surface. In this study, NCC was modified with lauric acid/p‐toluensulfonyl chloride mixture, then the modified nanocrystalline cellulose (mNCC) was incorporated into biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3,4)HB) by solution casting to prepare P(3,4)HB/mNCC nanocomposites. The prepared mNCC and P(3,4)HB/mNCC nanocomposites were characterized by Fourier transform‐infrared, X‐ray diffraction, contact angle test, transmission electron microscopy, scanning electron microscopy, differential scanning calorimetric, polarized optical microscope, dynamic mechanical analysis, and thermogravimetric analysis. The results show that the crystallinity and mechanical properties of P(3,4)HB are greatly improved due to the fact that NCC can be modified successfully and the mNCC can distribute uniformly in nanoscale in the matrix with good compatibility along the interface. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2015–2022, 2013  相似文献   

9.
The influence of lignocellulosic nanofibers (LCNF) additive on the inherent mechanical properties of submicron electrospun poly(vinyl alcohol) (PVA) fibers is reported. LCNF with a diameter of 25 ± 15 nm and a length of 220 ± 90 nm obtained from hemp shives were dispersed in aqueous PVA solutions to produce homogeneous nanocomposite fibers with 0, 5, and 10 w/w % LCNF loads in solid PVA. Tensile tests on mats show that LCNF additive causes up to sevenfold increase in stiffness and significant decrease in elongation at yield. AFM‐based 3‐point bending tests on single LCNF‐doped fibers reveal up to 11.4 GPa Young's modulus in the diameter range of 300 to 500 nm, indicating a 2.4 times increase compared to neat PVA fibers. Mechanical properties of both neat and LCNF‐doped PVA fibers are found to be strongly size‐dependent at lower fiber diameters, with Young's modulus values exceeding 100 GPa at below 100 nm diameters. The results can be explained by extensive restructuration of hydrogen bonding network due to the LCNF additive. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44361.  相似文献   

10.
In this work, poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNCs) were crosslinked using sodium tetraborate decahydrate (borax) to improve the mechanical and thermal properties of the neat PVA. The results showed that the CNCs affected the crystallization behavior of the crosslinked PVA. The crystallization temperature of the crosslinked PVA with CNCs increased considerably from ~152 to ~187 °C. The continuous improvement of the thermal stability was observed with the increasing content of CNCs in the crosslinked PVA films. Additionally, the strong interaction between the CNCs and PVA was theoretically estimated from the Young's modulus values of the composites. Thermodynamic mechanical testing revealed that the crosslinked PVA composite films with CNCs could bear higher loads at high temperature compared to the films without the CNCs. At 60 °C, 2.7 GPa was reported for the storage modulus of the crosslinked composites with 3 wt % of CNCs, twice as high as that for the crosslinked films without CNCs. Moreover, creep results were improved when CNCs were added in the crosslinked nanocomposites. The materials prepared in this work could broaden the opportunities for applications in a wide range of temperatures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45710.  相似文献   

11.
A new poly(vinyl alcohol) (PVA)/quaternized lignin composite absorbent (PVA/QL) was synthesized from modified lignin and PVA, crosslinked by glutaraldehyde. As‐prepared absorbent was characterized by IR, DSC, SEM BET, and DMA. Effects of shaking time, absorbent dose, initial pH, and temperature on NO3? removal from aqueous solution by the absorbent were comprehensively investigated. The results show that the PVA/QL absorbent comprises quaternary ammonium groups in the form of ether bond. The composite absorbent exhibits remarkable network structure with large numbers of connected holes. The mechanical strength of the absorbent is enhanced by combining of PVA with modified lignin and crosslinkage of glutaraldehyde. The effect of pH on adsorption of NO3? is apparent and appropriate pH is 2.0. The adsorption process is endothermic, and determined to be consistent with the Langmuir isotherm. Furthermore, it is found that the quaternary ammonium structure and network structure in the surface of PVA/QL are the key factors to remove nitrate. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
The main objective of this study is to obtain ethylene‐vinyl acetate copolymer (EVA)/wood‐flour foams with low density (< 0.2 g/cm3) using chemical blowing agent. Stearic acid was used as a compatibilizer to improve not only the compatibility between wood‐flour and EVA but also the compatibility between moisture and EVA in this study. The effects of wood‐flour content on the density and mechanical properties of EVA/wood‐flour foams were studied. Also, the effects of content of stearic acid on the cell morphology of EVA/wood‐flour foams were investigated. The shape of EVA/wood‐flour foams with 20% wood‐flour content becomes more uniform with increasing content of stearic acid. The most stabilized shape of the foams is obtained with 5 wt % stearic acid content. The density of EVA/wood‐flour foams with 20% wood‐flour and 5 wt % stearic acid is 0.11 g/cm3. With increasing content of stearic acid, more gas remains in the EVA matrix and consequently, average cell size and density increase. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40894.  相似文献   

13.
The effect of type and content of wood fibers on the thermal, mechanical and rheological behavior of the commercial biodegradable polyester product, Ecovio® (BASF) is analytically studied. Ecovio® is basically a blend of poly(butylene adipate‐terephthalate) copolyester (Ecoflex®, BASF) and polylactide. Three different types of wood fibers, based either on raw cellulose (Arbocel) or selected conifers (Lignocel), with varying fiber size at various weight fractions were used for this purpose. The role of these fibers on the thermomechanical performance of Ecovio® was investigated in terms of several experimental techniques including scanning electron microscopy, differential scanning calorimetry, dynamic mechanical analysis, creep, tensile testing, and water uptake at room temperature. At the low wood fiber content (20 wt %), Lignocel composite's properties are predominant compared with the Arbocel composites. It has been found, that at this wood content, an efficient compatibility between matrix and fibers is achieved, leading to superior reinforcement. This trend is completely reversed at higher filler loading, probably due to the poor interfacial adhesion between the matrix and Lignocel occurring at 30 wt %. This behavior was supported by all the experimental methods employed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42185.  相似文献   

14.
The investigation of aerogels made from cellulose nanofibers and poly(vinyl alcohol) (PVOH) as a polymeric binder is reported. Aerogels based on different nanocellulose types were studied to investigate the influence of the nanocellulose dimensions and their rigidity on the morphology and mechanical properties of the resulting aerogels. Thus, cellulose nanocrystals (CNCs) with low (10), medium (25), and high (80) aspect ratios, isolated from cotton, banana plants, and tunicates, respectively, microfibrillated cellulose (MFC) and microcrystalline cellulose (MCC) were dispersed in aqueous PVOH solutions and aerogels were prepared by freeze‐drying. In addition to the cellulose type, the PVOH‐ and the CNC‐concentration as well as the freeze‐drying conditions were varied, and the materials were optionally cross‐linked by an annealing step or the use of a chemical cross‐linker. The data reveal that at low PVOH content, rigid, high‐aspect ratio CNCs isolated from tunicates afford aerogels that show the least amount of shrinking upon freeze‐drying and display the best mechanical properties. However, with increasing concentration of PVOH or upon introduction of a chemical cross‐linker the differences between materials made from different nanocellulose types decrease. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41740.  相似文献   

15.
α-Cellulose extracted from jute fiber was grafted with oligo( d -lactic acid) (ODLA) via a graft polycondensation reaction in the presence of para-toluene sulfonic acid and potassium persulfate in toluene at 130 °C for 9 h under 380 mmHg. ODLA was synthesized by the ring-opening polymerization of d -lactides in the presence of stannous octoate (0.03 wt % lactide) and d -lactic acid at 140 °C for 10 h. Composites of poly( l -lactic acid) (PLLA) with the ODLA-grafted α-cellulose were prepared by the solution-mixing and film-casting methods. The grafting of ODLA onto α-cellulose was confirmed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The analysis of the composites was performed with FTIR spectroscopy, SEM, wide-angle X-ray diffraction, and thermogravimetric analysis. The distribution of the grafted α-cellulose in the composites was uniform and showed better compatibility with PLLA through intermolecular hydrogen bonding. Only homocrystalline structures of PLLA were present in the composites, and the thermal stability increased with increasing percentage of grafted α-cellulose. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47424.  相似文献   

16.
In this study, ethylene‐vinyl alcohol copolymer (EVOH) nanocomposites were prepared by melt compounding both plant cellulose nanowhiskers (CNW) and bacterial cellulose nanowhiskers (BCNW) as nanofillers. Electrospinning and a “dissolution precipitation” method were used as strategies for the incorporation of CNW in EVOH before melt compounding with the aim of enhancing the degree of dispersion of the nanocrystals when compared with direct melt‐mixing of the freeze‐dried product with the polymer. As revealed by morphological characterization, the proposed preincorporation methods led to a significant improvement in the dispersion of the nanofiller in the final nanocomposite films. Furthermore, it was possible to incorporate concentrations as high as 4 wt % BCNW without causing significant agglomeration of the nanofiller, whereas increasing the CNW concentration up to 3 wt % induced agglomeration. Finally, DSC studies indicated that the crystalline content was significantly reduced when the incorporation method led to a poor dispersion of the nanocrystals, whereas high‐nanofiller dispersion resulted in thermal properties similar to those of the neat EVOH. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
In this article, urease was immobilized in a conducting network via complexation of poly(1‐vinyl imidazole) (PVI) with poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) (PAMPS). The preparation method for the polymer network was adjusted by using Fourier transform infrared (FTIR) spectroscopy. A scanning electron microscope (SEM) study revealed that enzyme immobilization had a strong effect on film morphology. The proton conductivity of the PVI/PAMPS network was measured via impedance spectroscopy, under humidified conditions. The basic characteristics (Michealis‐Menten constants, pHopt, pHstability, Topt, Tstability, reusability, and storage stability) of the immobilized urease were determined. The obtained results showed that the PAA/PVI polymer network was suitable for enzyme immobilization. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Traditional commodity polymers are widely used in several disposable or short‐life items and take hundreds of years to decompose in nature. These polymers could be replaced in several uses by biodegradable polymers, like polybutylene adipate‐co‐terephthalate (PBAT) studied in this work. For this, nonetheless, it is necessary to improve some of the PBAT properties, like mechanical resistance and barrier properties. In this work, cellulose nanocrystals (CNC) were incorporated in PBAT with this intention, through melt extrusion. Aiming to avoid CNC aggregation during the drying and extrusion process, a CNC chemical modification with phenylbutyl isocyanate was done. It was possible to obtain PBAT‐CNC melt extruded composites with an elastic modulus 55% higher and water vapor permeability 63% lower than the values of the pure polymer, without compromising PBAT biodegradation. Therefore, the composites prepared with these enhanced properties have great potential as substitutes for traditional commodity polymers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43678.  相似文献   

19.
This paper investigates the effects of natural flours on the crystallization behavior of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHBH). Two types of PHBH (3‐hydroxyhexanoate [3HH] contents of 5.6 and 11.1 mol %) were used as polymer matrix. One of two natural flours (cellulose or wood) at 1 wt % was added to this PHBH matrix. Crystallization behaviors under nonisothermal conditions were characterized using differential scanning calorimetry (DSC), while those under isothermal conditions were characterized using DSC and polarized optical microscopy. The results suggested that both cellulose and wood flour addition enhanced crystallization of the PHBH containing 5.6 mol % of 3HH (i.e., increased crystallization peak temperature and degree of crystallinity under the nonisothermal conditions, as well as decreased crystallization half time under the isothermal conditions). Of the two flours, wood flour was found to have greater effects, due to its higher crystal nucleating ability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43600.  相似文献   

20.
In this study, we made a new attempt to examine the relationship between the conductivity and the concentration of a polyelectrolyte solution and to prepare multilayer films with cationic lignin and polyanions through layer‐by‐layer self‐assembly. The nitrogen content of trimethyl lignin quaternary amine salt (TLQA) was 3.56%, and the carboxyl content of carboxymethylated poly (vinyl alcohol) (CMPVA) was 0.62 mmol/g. Attenuated total reflectance spectra confirmed that TLQA and CMPVA were fabricated and assembled successfully. The concentration of TLQA had a polynomial correlation with the conductivity [correlation coefficient (R2) = 0.9953], and the concentration of CMPVA was linear with the conductivity (R2 = 0.9819). The electrostatic sequential adsorption process was monitored with a UV–visible spectrophotometer, and the morphology of the (TLQA/CMPVA)n (where n is the number of double membranes) multilayer film was observed by atomic force microscopy and scanning electron microscopy. When the absorbance of the (TLQA/CMPVA)n multilayer film increased linearly, the linear equation was y = 0.0267x + 0.07453 and R2 was 0.9735. When five layers of TLQA and CMPVA were assembled, the surface root mean square roughness of TLQA and CMPVA were 21.07 and 65.28 nm, respectively. When the number of layers increased, the film surface roughness increased. The stability of the multilayer films in aqueous solution was determined by a conductivity meter. The (TLQA/CMPVA)n multilayer film was stable in water. The results of the research demonstrate for the first time that TLQA and CMPVA could be assembled and successfully driven by electrostatic forces. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44416.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号