首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Epoxidized natural rubber (ENR) was prepared using the performic epoxidation method. TPVs based on ENR/PP blends were later prepared by melt‐mixing processes via dynamic vulcanization. The effects of blend ratios of ENR/PP, types of compatibilizers, and reactive blending were investigated. Phenolic modified polypropylene (Ph‐PP) and graft copolymer of maleic anhydride on polypropylene molecules (PP‐g‐MA) were prepared and used as blend compatibilizers and reactive blending components of ENR/Ph‐PP and ENR/PP‐g‐MA blends. It was found that the mixing torque, apparent shear stress and apparent shear viscosity increased with increasing levels of ENR. This is attributed to the higher viscosity of the pure ENR than that of the pure PP. Furthermore, there was a higher compatibilizing effect because of the chemical interaction between the polar groups in ENR and PP‐g‐MA or Ph‐PP. Mixing torque, shear flow properties (i.e., shear stress and shear viscosity) and mechanical properties (i.e., tensile strength, elongation at break, and hardness) of the TPVs prepared by reactive blending of ENR/Ph‐PP and ENR/PP‐g‐MA were lower than that of the samples without a compatibilizer. However, the TPVs prepared using Ph‐PP and PP‐g‐MA as compatibilizers exhibited higher values. We observed that the TPVs prepared from ENR/PP with Ph‐PP as a compatibilizer gave the highest rheological and mechanical properties, while the reactive blending of ENR/PP exhibited the lowest values. Trend of the properties corresponds to the morphology of the TPVs. That is, the TPV with Ph‐PP as a blend compatibilizer showed the smallest rubber particles dispersed in the PP matrix, while the reactive blending of ENR/PP‐g‐MA showed the largest particles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4729–4740, 2006  相似文献   

2.
In situ melt dynamic vulcanization process has been employed to prepare electrically conductive polypropylene (PP)/ethylene–propylene–diene rubber (EPDM) (40/60 wt %) thermoplastic vulcanizates (TPVs) incorporated by expanded graphite (EG) as a conductive filler. Maleic anhydride grafted PP (PP‐g‐MAH) was used as compatibilizer and a sulfur curing system was designed and incorporated to vulcanize the EPDM phase during mixing process. Developed microstructures were characterized using scanning electron microscopy (SEM), melt rheomechanical spectroscopy (RMS), X‐ray diffraction (XRD), and transmission electron microscopy (TEM) and were correlated with electrical conductivity behavior. For comparison, another class of TPV/EG nanocomposites was fabricated using a commercially available PP/EPDM‐based TPV via both direct and masterbatch melt mixing process. Conductivity of the nanocomposites prepared by in situ showed no significant change during dynamic vulcanization till the mixing torque reached to the stationary level where micro‐morphology of the cured rubber droplets was fully developed, and conductivity abrupt was observed. In situ cured nanocomposites showed higher insulator to conductor transition threshold (3.15 vol % EG) than those based on commercially available TPV. All electrically conductive in situ prepared TPV nanocomposites exhibited reinforced melt elasticity with pseudosolid‐like behavior within low frequency region in dynamic melt rheometry indicating formation of physical networks by both EG nanolayers and crosslinked EPDM droplets. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Nanocomposites composed of organoclay and thermoplastic vulcanizates (TPVs) based on uncompatibilized or compatibilized polypropylene (PP)/ethylene–propylene–diene rubber (EPDM) blends were prepared in this study. The morphology of the nanocomposites was studied with wide‐angle X‐ray diffraction and transmission electron microscopy, which suggested that the addition of the compatibilizer played a key role in determining the morphology of the composites because of their interaction with the clay surface. Scanning electron microscopy study indicated the changes in the morphology of the rubber particles. Dynamic mechanical analysis was also applied to the analysis of these phenomena. Moreover, for nanocomposites with uncompatibilized PP/EPDM blends as the matrix, the samples showed tensile enhancement compared with neat TPV. Although the addition of the compatibilizer changed tensile properties of the composites in a rather different trend, the tensile modulus increased dramatically when the compatibilizer was added. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40618.  相似文献   

4.
A thermoplastic vulcanizate (TPV) of a ethylene–propylene–diene terpolymer (EPDM) and nylon copolymer (PA) was prepared by dynamic vulcanization. Maleic anhydride (MAH)–grafted EPDM (EPDM–g–MAH), MAH‐grafted EPR (EPR–g–MAH), and chlorinated polyethylene (CPE) were used as compatibilizers. The effect of dynamic vulcanization and compatibilizer on the crystallization behavior of PA was investigated. Differential scanning calorimeter measurement results showed no pronounced shift in the crystallization temperature for PA in EPDM–PA TPV compared to that for PA in the neat state, whereas the crystallization temperature increased after adding compatibilizer. The decrease in the crystallinity of TPVs was a result of the crystallization occurring in confined spaces between rubber particles. The equilibrium melting temperature (Tm0) of the PA copolymer was measured and was determined to be 157°C. The isothermal crystallization kinetics of PA in the neat and TPV states also was investigated. The crystallization rate was highest in the compatibilized TPV and lowest in the neat PA, whereas it was intermediate in the uncompatibilized TPV unvulcanized blends. Compared with unvulcanized EPDM–PA blends, the dynamic vulcanization process seemed to cause an obvious increase in the crystallization rate of the PA copolymer, especially when a suitable compatibilizer was used. This occurred because the dynamic vulcanization introduced fine crosslinked rubber particles that could act as heterogeneous nucleating centers. In addition, the use of a suitable compatibilizer permitted the formation of finely dispersed vulcanized rubber particles and therefore increased the density of the nucleating centers. The complex morphology of the blends was investigated by atomic force microscopy to evaluate the effect of compatibilizer on the size of the dispersed rubber particles. Compared with the morphology of TPVs with the same dosage of EPDM–g–MAH compatibilizer, the morphology of TPVs using EPR–g–MAH as compatibilizer showed much smaller dispersed rubber particles, which may have contributed to the higher crystallization rate. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 824–829, 2003  相似文献   

5.
Thermoplastic vulcanizates (TPVs) are prepared by the dynamic vulcanization process, where crosslinking of an elastomer takes place during its melt mixing with a thermoplastic polymer under high shear. TPVs based on polypropylene (PP) with different grades of ethylene‐octene copolymers (EOC) were prepared with a coagent assisted peroxide crosslinking system. The effect of dynamic vulcanization and influence of various types and concentrations of peroxide were mainly studied on the basis of the mechanical, thermal, and morphological characteristics. Three structurally different peroxides, namely dicumyl peroxide (DCP), tert‐butyl cumyl peroxide (TBCP), and di‐tert‐butyl peroxy isopropyl benzene (DTBPIB) were investigated. The mechanical properties of the TPVs are primarily determined by the extent of crosslinking in the EOC and the degree of degradation in the PP phase. Among all peroxides used DCP gives best overall properties with low‐molecular‐weight EOC, whereas TBCP shows best property level with high‐molecular‐weight EOC‐based TPVs. These can be explained on the basis of the molecular characteristics of EOC and the nature of the peroxide used. Differential scanning calorimetery (DSC) and morphological analysis reveal that PP and EOC are a thermodynamically immiscible system. The melting endotherm was studied to determine the influence of various peroxides on crystallinity of the PP phase. Tensile fracture patterns were also analyzed to study the failure mechanism of the samples. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
A new compatibilized method was used to prepare thermoplastic elastomer (TPE) of nitrile rubber (NBR) and polypropylene (PP) with excellent mechanical properties by dynamic vulcanization. Glycidyl methacrylate (GMA) grafted PP/amino‐compound was used as a compatibilizer. The effects of the curing systems, compatibilizer, PP type, and reprocessing on the mechanical properties of NBR/PP thermoplastic elastomers were investigated in detail. Experimental results showed that the addition of amino‐compound in the compatibilzer can significantly increase the mechanical properties of the NBR/PP thermoplastic elastomer. Compared with other amino‐compounds, diethylenetriamine (DETA) has the best effect. PP with higher molecular weight is more suitable for preparing NBR/PP thermoplastic elastomer with high tensile strength and high elongation at break. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2862–2866, 2002  相似文献   

7.
Thermoplastic vulcanizates (TPVs) are a special class of thermoplastic elastomer, produced by simultaneously mixing and cross‐linking a rubber with a thermoplastic at elevated temperature. Dicumyl peroxide‐cured TPVs based on blends of maleated ethylene propylene rubber (m‐EPM) and polypropylene (PP) thermoplastic using maleated‐PP as a compatibilizer have been developed. To reinforce the properties of these TPVs, nanosilica was added at different levels. With the increase of nanosilica concentrations, significant improvement in tensile strength, modulus, and impact strength of TPVs have been achieved. Morphology study shows that nanosilica is uniformly dispersed in the polymer matrices. Dynamic mechanical analysis shows that tan δ value at low temperature decreases with increasing nanosilica concentration indicating less damping characteristics. Thermogravimetric study revealed that thermal stability of TPVs is improved in presence of nanosilica. Equilibrium swelling study confirms that solvent resistance of TPVs could be improved by nanofiller incorporation. Rubber process analyzer found a very useful tool to understand the melt rheology of nanosilica filled TPVs in terms of dynamic functions over a wide range of strain amplitude and frequency. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

8.
The SEBS/PP thermoplastic vulcanizates (TPVs) were prepared by melt blending. Di‐tert‐butyl peroxide (DTBP) was used as the curing agent in combination with trimethylopropane trimethacrylate (TMPTMA) and poly(styrene‐b‐butadiene‐bstyrene) (SBS) as the coagents for the curing process. The synergistic effect of TMPTMA and SBS on the structure and properties of TPVs was studied by means of FT‐IR, DSC, torque rheometer, and universal testing machine. Both SEBS and PP crosslinked and the network structure formed under the participation of TMPTMA and SBS. Compared with the sole addition of the coagent, simultaneous loading of both TMPTMA and SBS could provide the TPVs with better solvent‐resistance and excellent mechanical properties. The crosslinking mechanism of the TPVs was also proposed. The slight lower value of Tm for the TPVs indicated the improved miscibility between PP and SEBS due to the crosslinking reaction. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44392.  相似文献   

9.
In this study, polyamide‐12 (PA12)/brominated isobutylene‐isoprene (BIIR) TPVs with good mechanical properties and low gas permeability were prepared by dynamic vulcanization in a twin‐screw extruder. The effects of three kinds of compatibilizers on the microstructure and properties of BIIR/PA12 TPV were studied. The compatibility between BIIR and PA12 was improved when maleated hydrocarbon polymeric compatibilizer is added. The reaction between maleic anhydride and amine in polyamide leads to the in situ formation of hydrocarbon polymer grafted polyamide which subsequently can be used to lower the interfacial tension between BIIR and polyamide. The compatibilizing effect of maleic anhydride modified polypropylene (PP‐g‐MAH) on BIIR/PA12 blends is the best among these compatibilizers because the surface energy of PP‐g‐MAH is very close to that of BIIR. The dispersed rubber phase of the blend compatibilized by PP‐g‐MAH shows the smallest size and more uniform size distribution, and the resulting TPVs show the best mechanical properties. The effects of fillers on the properties of BIIR/PA12 TPV were also investigated. The size of the BIIR phase increases with the increase in the content of CaCO3. The modulus and tensile strength of TPVs increased with the increase in the content of CaCO3 because of the reinforcing effect of CaCO3 on TPVs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43043.  相似文献   

10.
Thermoplastic vulcanizates (TPVs) based on acrylonitrile–butadiene–styrene (ABS)/nitrile butadiene rubber (NBR) blends were prepared by dynamic vulcanization and then compatibilized by chlorinated polyethylene (CM). The effects of CM compatibilizer on the mechanical properties, Mullins effect, and morphological and dynamic mechanical properties of the TPVs were investigated systematically. Experimental results indicated that CM had an excellent compatibilization effect on the dynamically vulcanized ABS/NBR TPVs. Mullins effect results showed that the compatibilized ABS/NBR TPV had relatively lower internal friction loss than the ABS/NBR TPV, indicating the improvement of elasticity. Morphology studies showed that the fracture surfaces of ABS/CM/NBR TPVs were relatively smoother, indicating the improved elastic reversibility. DMA studies showed that the glass to rubber transition temperatures of ABS and NBR phases were slightly shifted toward each other with the incorporation of CM compatibilizer, which indicates the improvement of the compatibility. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40986.  相似文献   

11.
Maleated natural rubbers (MNRs) were prepared using various levels of maleic anhydride (MA) at 4, 6, 8, 10, and 12 phr. Dynamically cured 60/40 MNR/PP blends with phenolic‐modified polypropylene (Ph‐PP) compatibilizer at a loading level of 5 wt % of PP were prepared by melt mixing process using sulfur vulcanization system. The influence of the level of MA on properties of the thermoplastic vulcanizates (TPVs) was studied. It was found that the mixing torque, apparent shear stress, shear viscosity, tensile strength, and hardness properties increased with increasing levels of the MA or grafted succinic anhydride groups in the MNR molecules. This is attributed to an increase in chemical interaction and reaction between methylol groups in the Ph‐PP molecules and polar functional groups in the MNR molecules upon increasing levels of the grafted succinic anhydride groups. As a consequence, compatibilizing block copolymers of MNR and PP blocks were formed. The block copolymers were capable of compatibilizing with MNR and PP blend components via the respective blocks. Recyclability of the MNR/PP TPVs was also studied. It was found that, after processing through a number of cycles by injection molding and extrusion processing, the TPV exhibited marginal decreases in mechanical properties. This corresponded to slightly increasing size of the dispersed vulcanized rubber domains. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Thermoplastic vulcanizates (TPVs), which are a special class of elastomer alloy, prepared by dynamic vulcanization possess unique morphology of finely dispersed micron‐size cross‐linked elastomeric particles in a continuous thermoplastic matrix. The present study investigates the microstructure formation of elastomeric phase and its associated morphological changes during reprocessing of TPVs based on poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] triblock co‐polymer (S‐EB‐S) and solution polymerized styrene butadiene elastomer (S‐SBR) by scanning electron microscopy and atomic force microscopy. Semi‐efficient and efficient sulfur‐based curing systems have been adopted to cure the elastomeric phase and a comparative study has been made to demonstrate and explain the effect of reprocessing on the melt rheology and dynamic viscoelasticity of the TPVs. The present work also provides a better insight and guidance to control the microstructure of the cross‐linked elastomeric phase to prepare selectively co‐continuous or dispersed phase morphology. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41182.  相似文献   

13.
Blends of thermotropic liquid crystalline polymer (LCPA‐950), based on a copolyester of hydroxynapthoic acid and hydroxybenzoic acid with an engineering thermoplastic, poly(phenylene sulfide) (PPS), were prepared using a corotating twin‐screw extruder. Addition of a third component, a functionalized polypropylene (maleic anhydride grafted polypropylene, MA‐PP), that interact with the thermotropic liquid crystalline polymer (TLCP) facilitates the structural development of the TLCP phase by acting as a compatibilizer at the interface. Differential scanning calorimetry and dynamic mechanical thermal analysis results, however, show that there is an interaction between the polymers in the presence of compatibilizer. This means that MA‐PP can be used as a compatibilizer for the PPS/LCP in situ composite system. The viscosity of the compatibilized in situ composite was decreased by the compatibilizer, and this is mainly due to the fibrous structure of the LCP at the high shear rate. The mechanical properties of the ternary blends were increased when a proper amount of MA‐PP was added. This is attributed to fine fibril generation induced by the addition of MA‐PP. Morphological observations determined the significance of the third component in immiscible polymer blends, and an optimum amount of MA‐PP exists for the best mechanical performance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
The effectiveness of P(E‐co‐MA‐co‐GMA) as a compatibilizer for recycled PET/PP and recycled PET/PP‐EP (polypropylene (ethylene‐propylene) heterophase copolymer) blends was investigated by means of morphological (scanning electron microscopy), rheological (small amplitude oscillatory shear), mechanical (tensile, flexural and impact tests), and thermal (differential scanning calorimetry) properties. Compatibilizer concentration ranged from 1 to 5 wt % with respect to the whole blend. All blends were obtained in a 90/10 composition using a twin screw extruder. Compatibilization effects for PETr/PP‐EP were more pronounced due to ethylene segments present in both PP‐EP and P(E‐co‐EA‐co‐GMA). PETr/PP‐EP has shown greater dispersed phase size reduction, a more solid‐like complex viscosity behavior and larger storage modulus at low frequencies in relation to PETr/PP blend. For both investigated blends, mechanical properties indicated an improvement in both elongation at break and impact strength with increasing compatibilizer content. PETr/PP‐EP blends showed improved performance for the same level of compatibilizer content. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41892.  相似文献   

15.
In this article, waste ground rubber tire (WGRT) powder was introduced into thermoplastic vulcanizate (TPV) to prepare the blends of WGRT powder/TPV. The mechanical, rheological, thermal aging, and dynamic properties of the blends were investigated with respect to the particle size and dosage of WGRT powder. The results showed that tensile strength, tear strength, elongation at break, and tensile permanent deformation of the blends increased with the decrease in WGRT particle size and decreased with the dosage of WGRT. The effects of different types and dosages of compatibilizers on mechanical and rheological properties of the blends were studied. The results showed that the compatibilizer PP‐g‐MAH could effectively improve the interfacial compatibility between WGRT and the TPV matrix to enhance the comprehensive properties of blends. The TPV/WGRT/PP‐g‐MAH blends obtained the best overall properties when prepared at the weight ratio 100/30/5. Rheological studies demonstrated that the WGRT/TPV blends represented lower apparent viscosity after PP‐g‐MAH were added, which means that processing performance of the blends was improved by PP‐g‐MAH. Scanning electron microscopy was used to study the morphologies of the blends. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39868.  相似文献   

16.
Dynamically cured blends of polypropylene (PP) and ethylene octene copolymer (EOC) with coagent‐assisted peroxide curative system were prepared by melt‐mixing method. It was well established that PP exhibits β‐chain scission in the presence of peroxide. Principally, incorporation of a coagent increases the crosslinking efficiency in the EOC phase and decreases the extent of degradation in the PP phase. The present study mainly focused on the influence of three structurally different coagents, namely, triallyl cyanurate (TAC), trimethylol propane triacrylate (TMPTA), and N,N′‐m‐phenylene dimaleimide (MPDM), on the mechanical properties of the PP/EOC thermoplastic vulcanizates (TPVs). The reactivity and efficiency of different coagents were characterized by cure study on EOC gum vulcanizate. TAC showed the highest torque values followed by MPDM and TMPTA. Significant improvements in the physical properties of the TPVs were inferred with the addition of coagents. Among the three coagents used, MPDM showed the best balance of mechanical properties in these TPVs. The results indicated that torque values obtained during mixing and the final mechanical properties can be correlated. Different aspects were explained for the selection of a coagent that forms a product with desired properties. The phase morphologies of the TPVs prepared were studied by scanning electron microscopy. Tensile fracture patterns were also analyzed to study the failure mechanism of the samples. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A series of high‐temperature thermoplastic elastomers (TPEs) and thermoplastic vulcanisates (TPVs) were successfully developed based on two different types of heat resistant polyamide (PA) (25 parts by weight)—PA‐12 and PA‐6, in combination with three different functionalized rubbers (75 parts by weight) of varying polarity, e.g., maleic anhydride grafted ethylene propylene diene terpolymer (MA‐g‐EPDM), sulphonated ethylene propylene diene terpolymer, and carboxylated acrylonitrile butadiene rubber, by melt mixing method. These rubbers have low level of unsaturation in its backbone, and the plastics showed high melting range. Thus, the developed TPEs and TPVs were expected to be high temperature resistant. Resol type resin was used for dynamic vulcanization to further increase the high temperature properties of these blends. Interestingly, initial degradation temperature of the prepared blends was much higher (421 °C for MA‐g‐EPDM/PA‐12) than the other reported conventional TPEs and TPVs. Fourier transform infrared analysis described the interactive nature of the TPEs and TPVs, which is responsible for their superior properties. The maximum tensile strength with lowest tension set was observed for the carboxylated acrylonitrile butadiene rubber/PA‐12 TPV. Mild increase in mechanical properties without any degradation was observed after recycling. Dynamic mechanical analysis results showed two distinct glass transition temperatures and indicated the biphasic morphology of the blends, as evident from the scanning electron microscopy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45353.  相似文献   

18.
The mechanical properties of thermoplastic vulcanizates (TPVs), depend strongly on their morphologies, which themselves depend on the properties of the primary polymers, the composition of the TPV, and the crosslink system and crosslink process. The morphology is defined during the dynamic vulcanization. This work deals with the study of the influence of crosslink systems on TPVs based on PA/NBR (copolyamide PA6/6‐6 and nitrile rubber) in a 40/60 composition. Dicumyl peroxide, bismaleimide, phenolic resin, a sulfur‐accelerated system, and dicumyl peroxide with two coagents were used as crosslinkers. TPVs were characterized by taking into account their mechanical strength, solvent resistance, compression set, and morphology. The curing system constituted by dicumyl peroxide and sulfur/bismaleimide as coagents resulted in a more defined morphology, and therefore the TPV exhibited the best properties. For these TPVs, a morphology consisting of spherical domains of rubber distributed homogeneously on the polyamide matrix could be observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
New nanocomposite thermoplastic vulcanizates (TPVs) comprising dynamically cross‐linked nanoscale EPDM rubber particles dispersed throughout the polypropylene (PP) matrix have been prepared by both batch and continuous melt blending of PP with EPDM in the presence of vulcanizing ingredients, nanoclay and maleated EPDM (EPDM‐g‐MA) as compatibilizer. X‐ray diffraction, linear melt viscoelastic measurement, and tensile mechanical behavior results revealed that the developed microstructure is strongly affected by the type of the melt compounding process as well as the route of material feeding. When EPDM phase was precompounded with a vulcanizing agent, nanoclay, and EPDM‐g‐MA prior to the melt blending with PP, not only nanosize cross‐linked rubber particles appeared uniformly throughout the PP continuous phase, but also the melt blending leads to the significant enhancement of the mechanical properties compared with counterpart samples prepared by one‐step melt mixing process. Also better dispersion of nano layers in the rubber compound before melt blending with PP results in higher mechanical properties of the resulted TPV. POLYM. ENG. SCI., 56:914–921, 2016. © 2016 Society of Plastics Engineers  相似文献   

20.
In this study, the mechanical and thermal properties of low‐density polyethylene (LDPE)/thermoplastic tapioca starch blends were determined with LDPE‐g‐dibutyl maleate as the compatibilizer. Mechanical testing for the evaluation of the impact strength and tensile properties was carried our as per standard ASTM methods. Thermogravimetric analysis and differential scanning calorimetry were also used to assess the thermal degradation of the blends. Scanning electron micrographs were used to analyze fracture and blend morphologies. The results show significant improvement in the mechanical properties due to the addition of the compatibilizer, which effectively linked the two immiscible blend components. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1109–1120, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号