首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Polyvinyl alcohol (PVA) thin films were reinforced by glutaraldehyde and multiwalled carbon nanotubes (MWCNTs) and then mechanical, water solubility, water swelling, water uptake, water vapor permeability, and antibacterial properties of the films were examined. Cross‐linking by glutaraldehyde or incorporation of MWCNT caused a significant increase in tensile strength, decrease in elongation at break, and increase in Young's modulus of the PVA films, while MWCNTs were more effective rather than that of glutaraldehyde. Cross‐linking by glutaraldehyde or incorporation of MWCNT caused a significant decrease in water solubility, water swelling and water uptake, with a similar manner. Cross‐linking by glutaraldehyde or incorporation of MWCNT caused a significant increase in the light absorbance, while maximum absorbance was at 400 nm. Only PVA/MWCNT films but no PVA/glutaraldehyde showed significant antibacterial activities in a dose‐dependent manner against both Gram‐positive and Gram‐negative bacteria. Thus, noncovalent improvement by MWCNT was more effective on the PVA thin films rather than covalent cross‐linking by glutaraldehyde. Our results suggest that the PVA/MWCNT composites films could be used as a very attractive alternative to traditional materials for different biomedical and food applications. POLYM. COMPOS., 35:1736–1743, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
The aim of the present research was to synthesize and characterize polyvinyl alcohol/dextran/Zataria essential oil hydrogel wound dressings. For this purpose, dressings were made with different concentrations of polymers (PVA and Dex) and ZMO by solvent casting method. By dissolving PVA and Dextran in de-ionized water, PVA-Dex gel was made. The polymeric solution was mixed with glycerol. The pH of PVA-DEX-Glycerol solution was adjusted to 3 and glutaraldehyde was used as a cross-linker. ZMO, as the antibacterial and antioxidant agent, was added to the samples in different percentages (2,5,10%). It was found that both Dex and ZMO significantly influenced the hydrophilicity, gel fraction, and water uptake capacity of hydrogel films. The results showed that by the addition of Dex to PVA, the contact angle decreased from 48.54° ± 0.95 to 45.90 ± 0.73°, whereas by the addition of ZMO, the contact angle increased to 71.1 ± 2.43. SEM investigations revealed that the fabricated films had a uniform structure and the surface roughness increased with the addition of ZMO. The results indicated an increased elongation of 11.5% with the incorporation of ZMO into the films. The antimicrobial evaluation of the produced films showed that the loading of 10% v/v ZMO could broaden the microbicidal activity of PVA/Dex/ZMO film. The investigations on the interactions between synthesized wound dressings and fibroblast cells showed that the addition of ZMO into hydrogel films improved cell viability. The findings showed that PVA/Dex/ZMO films could have considerable use as wound dressing.  相似文献   

3.
Carboxymethyl cellulose (CMC) composite films were prepared from CMC solutions (2% w/v) containing multiwalled carbon nanotubes (MWCNT) as nanofiller and glycerol (25% w/w CMC) as plasticizer. Tensile strength, elongation at break (EAB), young's modulus, water solubility, water swelling, water uptake, and water vapor permeability (WVP) for CMC films were 27.5 ± 2.5 MPa, 11.2 ± 0.8%, 198 ± 18 MPa, 57 ± 1.5%, 738 ± 25%, 124 ± 4%, and 0.55 ± 0.036 g.mm/m2.kPa.h, respectively. By increasing the relative humidity from 11.4 to 85.5%, the moisture absorption (MA) of CMC films was increased from 4 to 38%. Incorporation of MWCNT into the matrix caused a significant increase in the tensile strength, decrease in EAB, increase in young's modulus, decrease in water solubility, decrease in water swelling, decrease in water uptake, and decrease in MA. CMC/MWCNT films containing 1% MWCNT showed the lowest WVP. Scanning electron microscopy showed a good dispersion of MWCNT in the CMC matrix. CMC/MWCNT films containing >1% MWCNT showed significant antibacterial activities against both Gram‐positive and Gram‐negative bacteria in a dose‐dependent manner. Thus, good mechanical properties and water resistance along with strong antibacterial activities make CMC films grafted with MWCNT as a suitable packaging material. POLYM. COMPOS., 36:145–152, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
This study was performed to evaluate the properties of poly(vinyl alcohol) (PVA), gelatin, and PVA–gelatin dispersions and films enriched with Zataria multiflora essential oil (ZO). The results reveal that the ζ potential, particle size, and viscosity values and the antioxidant and antibacterial activities of the dispersions changed significantly with the addition of ZO to the polymer matrix. Changes in the properties of the dispersions suggested the presence of interactions between PVA or gelatin and ZO. Such interactions could affect the mechanical and water‐barrier properties of the films. ZO induced remarkable decreases in the tensile strength, elastic modulus, and swelling and increases in the elongation at break, solubility, and water‐vapor permeability of the films. Scanning electron microscopy analyses proved the impact of ZO on the film morphology, which affected the film properties, including the mechanical and water‐barrier properties. The addition of ZO to the polymer led to a coarse film microstructure because of the hydrophobic ZO aggregates, which produced discontinuities in the film matrix. ZO considerably increased the antioxidant and antibacterial activities of the dispersions. Pseudomonas aeruginosa was the most resistant bacteria. The improved antioxidant and antimicrobial activities of the PVA–ZO and gelatin–ZO indicated that such products could effectively be used as wound dressings. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45351.  相似文献   

5.
Cross-linked poly(vinyl alcohol) (PVA) was blended with 10, 20, 33, and 50 wt. % of coconut shell (CCS) powder by a solution casting process. The solution-casted PVA/CCS powder films were dried and characterized for physico-mechanical properties, such as tensile, tear, and burst strengths, and density. The influence of CCS powder addition on moisture content, moisture vapor transmission rate (MVTR), solubility, swelling, and the thermal transition of PVA/CCS powder composite films have been studied. The PVA/CCS powder composite films show enhancement in elastic modulus, solubility resistance in water, 5% acetic acid, 50% ethanol, moisture vapor transmission rate, and moisture resistance. However, the introduction of CCS powder affects tensile strength, percentage of elongation, tear and burst strengths, moisture content, and swelling capacity Considerably.  相似文献   

6.
采用溶液流延法以豌豆淀粉(PS)和聚乳酸(PLA)为原料制备了豌豆淀粉/聚乳酸(PS/PLA)双层薄膜。通过对双层薄膜的吸水性、溶解性、水蒸气透过性、拉伸性能、表面形貌等进行测试,研究了薄膜的力学性能、疏水性能以及水蒸气阻隔性能。结果表明:随着双层膜中聚乳酸层的比例增加,双层薄膜的吸水性、溶解性和水蒸气透过性逐渐降低,拉伸强度和拉伸模量逐渐增加,断裂伸长率逐渐下降,表明水蒸气阻隔效果明显,增加了膜的韧性,降低了膜的强度。当PLA和PS的质量比为50:50时,PS/PLA双层膜的拉伸强度为(13.47±0.75)MPa,拉伸模量为(0.848±0.002)GPa;断裂伸长率为(16.11±0.16)%,水蒸气透过系数为0.27×10-10 g·cm/(cm2·s·Pa)。  相似文献   

7.
Poly(vinyl alcohol) (PVA) composites with 10, 20, 33, and 50 wt % of coconut shell (CCS) powder were prepared by aqueous mixing. The solution was casted as films and tested for physicomechanical properties such as tensile, tear, burst strengths, density, moisture content, moisture vapor transmission rate, moisture analysis; solubility resistance in water, 5% acetic acid, 50% ethanol, sunflower oil; swelling characteristics in 50% ethanol, sunflower oil; and thermal characteristics by differential scanning calorimetry. The PVA/CCS powder composite films show enhancement in elastic modulus, degradability, solubility resistance in water, 5% acetic acid, 50% ethanol, and moisture resistance. However, the introduction of CCS powder varies the tensile strength and affects percentage of elongation, tear and burst strengths, moisture content, density, and swelling capacity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3862–3867, 2006  相似文献   

8.
Poly(vinyl alcohol) (PVA) was blended with 10, 20, 30, 40, and 50 wt % of starch with and without crosslinking by solution casting process. The solution‐casted films were dried and tested for physicomechanical properties like tensile strength, tensile elongation, tensile modulus, tear and burst strengths, density, and thermal analysis by differential scanning calorimetry (DSC). These PVA/starch films were further characterized for moisture content; solubility resistance in water, 5% acetic acid, 50% ethanol, and sunflower oil; and swelling characteristics in 50% ethanol and sunflower oil. The crosslinked PVA/starch composite films show significant improvement in tensile strength, tensile modulus, tear and burst strengths, and solubility resistance over the uncrosslinked films. Between the crosslinked and uncrosslinked films, the uncrosslinked films have higher tensile elongation, moisture content, moisture absorption, and swelling over the crosslinked films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 909–916, 2007  相似文献   

9.
Blend films from nature soy protein isolates (SPI) and synthetical poly(vinyl alcohol) (PVA) compatibilized by glycerol were successfully fabricated by a solution‐casting method in this study. Properties of compatibility, mechanical properties, and thermal stability of SPI/PVA films were investigated based on the effect of the PVA concentration. XRD tests confirm that the SPI/PVA films were partially crystalline materials with peaks of 2θ = 20°. And, the addition of glycerol will insert the crystalline structure and destroy the blend microstructure of SPI/PVA. Differential scanning calorimetry (DSC) tests show that SPI/PVA blend polymers have a single glass transition temperature (Tg) between 80 and 115.0°C, which indicate that SPI and PVA have good compatibility. The tension tests show that SPI/PVA films exhibit both higher tensile strength (σb) and percentage elongation at break point (P.E.B.). Thermogravimetric analysis (TGA) and water solubility tests show that SPI/PVA blend polymer has more stable stability than pure SPI. All the results reflect that SPI/PVA/glycerol blend film provides a convenient and promising way to prepare soy protein plastics for practical application. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The effects of gum tragacanth obtained from two species of Astragalus Gossypinus (GT-G) and A. Parrowianus (GT-P) at two levels of 10% and 30% combined with cellulose nanofibers (CNF; 5%) on the physico-mechanical and structural properties of polyvinyl alcohol (PVA) nanocomposite film were investigated in this study. The water solubility and water vapor permeability of the films decreased with increasing the content of both gums, especially in the film containing 30% GT-P. The highest values of the tensile strength (39.3 MPa) and elongation at break (445%) belonged to the treatment containing 10% GT-P (90/10P/0). The FTIR and DSC analyses confirmed good interactions between GT and PVA in the 90/10P/0 treatment. SEM images indicated the dense structure of this film as the optimum treatment. Although the presence of CNF in the films containing GT-G improved some properties, especially the Young modulus, it impaired all the functional properties of nanocomposite GT-P film.  相似文献   

11.
Summary Novel blend films of soy protein isolate (SPI) and poly(vinyl alcohol) (PVA) compatibilized by glycerol were fabricated by preparing a solution, and then casting it on a Teflon-coated metal sheet. Mechanical, biodegradation and water vapor permeability of the blend properties were systematically investigated with various methods. SEM analysis results release that the SPI/PVA/glycerol film degrades at a slower rate than pure SPI. The mechanical test showed that the stress at yield point, stress at break point and Young’s modulus were decreased and percentage elongation at yield point and percentage elongation at break point and of SPI/PVA were increased obviously than pure SPI films. The blend plastics were softened and became semi-rigid contributing to the plasticization of glycerol and the crystalline partion of PVA was destroyed by glycerol. Water vapor permeability of SPI/PVA/glycerol showed the minimum at the component of SPI/PVA (100/35) compatibilized by 3.5% of glycerol.  相似文献   

12.
Poly(vinyl alcohol) (PVA) films crosslinked by cinnamaldehyde (CIN) at various concentrations were prepared. Their physicochemical and antibacterial properties were compared with those of uncrosslinked films. The results suggest that the crosslinked films exhibited higher transparency, tensile strength, and elongation at break in a certain CIN concentration range. They also displayed decreased water vapor permeability and water solubility. Although the antibacterial activity of the crosslinked film‐forming solution was less slightly than that of the uncrosslinked film‐forming solution, the crosslinked film‐forming solution still demonstrated strong antibacterial activity when the concentration of CIN was 2% v/v. The aldol condensation reaction between the aldehyde group of CIN and the alcoholic hydroxyl group of PVA was determined by Fourier transform infrared spectroscopy. By the crosslinking reaction, the heat stability of the crosslinked film was enhanced compared with that of the uncrosslinked film. Meanwhile, a compact, smooth, and continuous cross‐sectional microstructure present in the crosslinked film was observed by scanning electron microscopy. The higher water resistance and transparency gave the crosslinked films priority for use in food packaging. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45324.  相似文献   

13.
采用延流法制备了香兰素(V)交联的壳聚糖/聚乙烯醇/蜗牛黏液(CS/PVA/SM)复合膜,并通过热重分析仪(TG)、扫描电子显微镜(SEM)和万能材料试验机等研究了不同CS/SM配比对复合膜光学性能、水蒸气和氧气阻隔能力、力学性能、热力学性能及生物降解性能等的影响。结果表明,CS/PVA/SM复合膜为可降解的亲水性薄膜,当CS溶液/SM溶液体积比为5/3时,复合膜性能优良,其抗氧化活性为87.51 %,其水蒸气透过率比纯CS膜降低了75.16 %,不透明度降低了87.74 %,拉伸强度提高了16.04 %,断裂伸长率提高了28.26倍;随着SM含量的增加,复合膜的热稳定性有所降低;CS溶液/SM溶液体积比为5/1、5/2和5/3时,复合膜表现出良好的相容性;SM的添加使复合膜具有很好的延展性和柔韧性,V的添加提高了复合膜的拉伸强度和抗氧化能力;所制备的CS/PVA/SM复合膜在食品包装领域中有潜在的应用前景。  相似文献   

14.
Crosslinked poly(vinyl alcohol) was blended with 10, 20, 40, and 50 wt % starch by a solution‐casting process. The solution‐cast films were dried, and then their physicomechanical properties including tensile strength, tensile elongation, tensile modulus, tear strength and density, and burst strength and density were tested. Thermal analysis was performed by differential scanning calorimetry. A moisture analysis of the PVA/starch films was performed and their moisture content determined. Also investigated were the films'resistance to solubility in water, 5% acetic acid, 50% ethanol, and sunflower oil and their swelling characteristics in 50% ethanol and sunflower oil. The prepared PVA/starch blends showed significant improvement in tensile modulus and in resistance to solubility in water, 5% acetic acid, and 50% ethanol. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1127–1132, 2007  相似文献   

15.
This study investigated the effects of urea/ethanolamine mixture (UE) on the crystallinity, thermal, and mechanical properties of poly(vinyl alcohol) (PVA) films. PVA films were prepared from solutions containing PVA, urea, ethanolamine, and water by casting and evaporating at 50°C for 12 h. The plasticization efficiency of UE was compared with that of glycerol (GL), the conventional plasticizer for PVA. The properties of PVA films plasticized by UE and GL, abbreviated to UE-plasticized PVA film and GL-plasticized PVA film, respectively, were investigated by Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and mechanical testing. It was proved that UE could form more stable hydrogen bonding with the hydroxyl group of PVA molecule and was more effective in breaking the hydrogen bonds between the hydroxyl groups. Thus, the crystallinity of UE-plasticized PVA films was lower than that of GL-plasticized PVA films. The melting temperatures of UE-plasticized PVA films were lower than those of GL-plasticized PVA films. It was found that UE-plasticized PVA film showed a higher degradation temperature compared with GL-plasticized PVA film. The degree of swelling of UE-plasticized PVA film was higher than that of GL-plasticized PVA film but solubility (S) of UE-plasticized PVA film was lower in aqueous solution. Furthermore, UE-plasticized PVA films show lower tensile strength and higher elongation at break (E) than those of GL-plasticized PVA films. The tensile strength, E, and Young's modulus of PVA film containing 30% UE mixture reached 50.78 MPa, 591.19% and 76.9 MPa, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Spirulina–poly(vinyl alcohol) (PVA)–glycerol (SPG) films with improved mechanical performance, especially tensile strength (TS) and the elongation at break (EAB), are fabricated by a casting method. The integrity, color, solubility, microstructure, thermal properties, tensile strength, and compatibility of the SPG films are assessed. SPG films became smooth, homogeneous, and flexible after plasticizing with glycerol. The presence of PVA and hydrogen bonding of PVA with glycerol and spirulina protein improves the water resistance of SPG films by decreasing water absorption of spirulina protein and decreasing water diffusion through the films. The amount of carbonaceous residues decreases from 31% to 14% because of the co‐pyrolysis of spirulina, PVA, and glycerol. TS increases from 2.5 to 26 Mpa and modulus from 53 to 610 Mpa with increasing PVA content. Glycerol enhances film flexibility and EAB up to 50%. Spirulina can be composited with hydrophilic polymers to fabricate compatible, processable and thermally recyclable films with desirable mechanical performance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44842.  相似文献   

17.
This article describes a process for esterifying polyvinyl alcohol (PVA) with L‐lactide (LLA) and D,L‐lactic acid (LA), using ethyl acetate and N,N′‐dimethyl formamide at temperatures varying from 120 to 150°C. The grafting process was carried out under nitrogen to avoid possible oxidation or other degradation of the process ingredients and product. Lower Tg values were obtained for the PVA/LLA graft copolymers of higher LLA content suggesting some compatibility in the amorphous phase. Higher Tg values were observed for PVA/LA graft copolymers that yielded tough polymer films. The structure of the copolymers was studied by solid‐state 13C‐NMR, infrared spectroscopy, and differential scanning calorimetry (DSC). The PVA/LA films exhibited melt processability and good mechanical properties such as yield strength, tensile energy at break, modulus, and elongation at break. The polymer films produced through compression molding at 100°C showed good swelling properties. The transport coefficient (n) values determined from the plot of log(Mt/M) vs. log t indicate Fickian behavior, and they are consistent with the reported literature values for other PVA systems. The nature of water in gels [bound water (Wb), freezing (Wf), and freezing bound (Wfb), and water content (Wt)] was evaluated from DSC data. The results demonstrate that PVA/LA hydrogels with good combination of thermal, physicomechanical, and swelling properties can be prepared via the lactic acid esterification of PVA polymer process described. Besides being melt processable, the PVA/LA gels exhibit a melting point, which indicates possibly use of higher temperatures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
In this study, interaction and compatibility between sugar‐beet pulp (SBP) and polyvinyl alcohol (PVA) in blend films was assessed. Film‐forming dispersions of different ratios of SBP to PVA (100/0, 75/25, 50/50, and 25/75) were cast at room temperature. The effects of adding PVA to SBP on the resulting film's physical, mechanical and barrier properties and thermal stability were investigated. X‐ray diffraction and environmental scanning electron microscopy (ESEM) were used to characterize the structure and morphology of the composites. When PVA was also added to the composite films, the films became softer, less rigid and more stretchable than pure SBP films. The addition of PVA gave significantly greater elongation at break (12.45%) and lower water vapor permeability (1.55 × 10?10 g s?1 m?1 Pa?1), but tensile strength did not markedly change, remaining around 59.68 MPa. Thermogravimetric analysis also showed that SBP/PVA film had better thermal stability than SBP film. The ESEM results showed that the compatibility of SBP50/PVA50 was better than those of other composite films. These results suggest that when taking all the studied variables into account, composite films formulated with 50% PVA are most suitable for various packaging applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41354.  相似文献   

19.
Starch‐based plastic films were prepared by the electron beam irradiation of starch and poly(vinyl alcohol) (PVA) in a physical gel state at room temperature. The influence of starch/PVA composition, irradiation dose, and plasticizer (glycerol) on the properties of the plastic films was investigated. The gel fraction of the starch/PVA films increased with both the radiation dose and PVA content in the plastic film and decreased with increasing glycerol concentration. The starch/PVA compatibility was determined by measurement of the thermal properties of the starch/PVA blends with various compositions with differential scanning calorimetry. The swelling of the starch/PVA films increased with increasing PVA content and decreasing irradiation dose. Mechanical studies were carried out, and the tensile strength of the films decreased at high starch ratios in the starch‐based mixture. This was due to the decrease in the degree of crosslinking of starch. Furthermore, when PVA, a biodegradable and flexible‐chain polymer, was incorporated into the starch‐based films, the properties of the films, such as the flexibility (elongation at break), were obviously improved. The tensile strength of the films decreased with increasing glycerol concentration, but elongation at break increased up to a maximum value at a 20% glycerol concentration, and then, it leveled off and decreased slightly. Biodegradation of the starch/PVA plastic films was indicated by weight loss (%) after burial in soil and morphological shape, which was detected by scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 504–513, 2007  相似文献   

20.
Starch/polyvinyl alcohol (PVA) blend films were prepared by using corn starch, polyvinyl alcohol (PVA), glycerol (GL), and citric acid (CA) as additives and glutaraldehyde (GLU) as crosslinking agent for the mixing process. The additives, drying temperature, and the influence of crosslinker of films on the properties of the films were investigated. The mechanical properties, tensile strength (TS), elongation at break (% E), degree of swelling (DS), and solubility (S) of starch/PVA blend film were examined adding GL and CA as additives. At all measurement results, except for DS, the film adding CA was better than GL because hydrogen bonding at the presence of CA with hydroxyl group and carboxyl group increased the inter/intramolecular interaction between starch, PVA, and additives. CA improves the properties of starch/PVA blend film compared with GL. TS, % E, DS, and S of film adding GLU as crosslinking agent were examined. With increasing GLU contents, TS increases but % E, DS, and S value of GL‐added and CA‐added films decrease. When the film was dried at low temperature, the physical properties of the films were clearly improved because the hydrogen bonding was activated at low temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2554–2560, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号