首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well‐defined poly(l ‐lactide‐b‐ethylene brassylate‐b‐l ‐lactide) (PLLA‐b‐PEB‐b‐PLLA) triblock copolymer was synthesized by using double hydroxyl‐terminated PEBs with different molecular weights. Gel permeation chromatography and NMR characterization were employed to confirm the structure and composition of the triblock copolymers. DSC, wide‐angle X‐ray diffraction, TGA and polarized optical microscopy were also employed to demonstrate the relationship between the composition and properties. According to the DSC curves, the cold crystallization peak vanished gradually with decrease of the PLLA block, illustrating that the relatively smaller content of PLLA may lead to the formation of a deficient PLLA type crystal, leading to a decrease of melting enthalpy and melting temperature. Multi‐step thermal decompositions were determined by TGA, and the PEB unit exhibited much better thermal stability than the PLLA unit. Polarized optical microscopy images of all the triblock samples showed that spherulites which develop radially and with an extinction pattern in the form of a Maltese cross exhibit no ring bond. The growth rate of the spherulites of all triblock samples was investigated. The crystallization capacity of PLLA improved with incorporation of PLLA, which accords with the DSC and wide‐angle X‐ray diffraction results. © 2019 Society of Chemical Industry  相似文献   

2.
Poly(adipic anhydride) (PAA) was prepared by the ring‐opening polymerization of adipic anhydride (AA) initiated by potassium poly(ethylene glycol)ate. The effects of various factors, such as the amount of initiator, concentration of the monomer, reaction time and temperature, and polarity of the solvent on the polymerization were investigated. The crude polymerized product was a mixture of PAA homopolymer and poly(ethylene glycol)–poly(adipic anhydride) block copolymer, as confirmed by 1H‐NMR and gel permeation chromatography. Chain‐transfer reactions occurred intensively for the AA polymerization in both the nonpolar solvent toluene and the polar solvents CHCl3 and tetrahydrofuran, which predominantly determined the molecular weight and the monomer conversion for the polymerized product. The lower monomer conversion in toluene was ascribed to a lower livingness for the initiator in the nonpolar solvent when compared with other two, polar solvents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2194–2201, 2003  相似文献   

3.
Poly(styrene)‐poly(lactide) (PS‐PLA), poly (tert‐butyl styrene)‐poly(lactide) (PtBuS‐PLA) diblocks, and poly(tert‐butyl styrene)‐poly(styrene)‐poly(lactide) (PtBuS‐PS‐PLA) segmented and tapered triblocks of controlled segment lengths were synthesized using nitroxide‐mediated controlled radical polymerization. Well‐defined PLA‐functionalized macromediators derived from hydroxyl terminated TEMPO (PLAT) of various molecular weights mediated polymerizations of the styrenic monomers in bulk and in dimethylformamide (DMF) solution at 120–130°C. PS‐PLA and PtBuS‐PLA diblocks were characterized by narrow molecular weight distributions (polydispersity index (Mw/Mn) < 1.3) when using the PLAT mediator with the lowest number average molecular weight Mn= 6.1 kg/mol while broader molecular weight distributions were exhibited (Mw/Mn = 1.47‐1.65) when using higher molecular weight mediators (Mn = 7.4 kg/mol and 11.3 kg/mol). Segmented PtBuS‐PS‐PLA triblocks were initiated cleanly from PtBuS‐PLA diblocks although polymerizations were very rapid with PS segments ~ 5–10 kg/mol added within 3–10 min of polymerization at 130°C in 50 wt % DMF solution. Tapering from the PtBuS to the PS segment in semibatch mode at a lower temperature of 120°C and in 50 wt % DMF solution was effective in incorporating a short random segment of PtBuS‐ran‐PS while maintaining a relatively narrow monomodal molecular weight distribution (Mw/Mn ≈ 1.5). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

4.
A thermosensitive amphiphilic triblock copolymer, poly(d,l ‐lactide) (PLA)‐b‐poly(N‐isopropyl acrylamide) (PNIPAAM)‐b‐PLA, was synthesized by the ring‐opening polymerization of d,l ‐lactide; the reaction was initiated from a dihydroxy‐terminated poly(N‐isopropyl acrylamide) homopolymer (HO‐PNIPAAM‐OH) created by radical polymerization. The molecular structure, thermosensitive characteristics, and micellization behavior of the obtained triblock copolymer were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, dynamic light scattering, and transmission electron microscopy. The obtained results indicate that the composition of PLA‐b‐PNIPAAM‐b‐PLA was in good agreement with what was preconceived. This copolymer could self‐assemble into spherical core–shell micelles (ca. 75–80 nm) in aqueous solution and exhibited a phase‐transition temperature around 26 °C. Furthermore, the drug‐delivery properties of the PLA‐b‐PNIPAAM‐b‐PLA micelles were investigated. The drug‐release test indicated that the synthesized PLA‐b‐PNIPAAM‐b‐PLA micelles could be used as nanocarriers of the anticancer drug adriamycin (ADR) to effectively control the release of the drug. The drug‐delivery properties of PLA‐b‐PNIPAAM‐b‐PLA showed obvious thermosensitive characteristics, and the release time of ADR could be extended to 50 h. This represents a significant improvement from previous PNIPAAM‐based drug‐delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45304.  相似文献   

5.
Since monomethoxy poly(ethylene glycol) (mPEG) inevitably contains diol PEG and is difficult to get high molecular weight through traditional synthesis at high temperature under high pressure, a novel synthetic technique via anionic solution polymerization was reported in this study. With a new initiating system, potassium naphthalene and methanol, was introduced, the polymerization proceeded at ambient temperature and side reactions were well restrained. Furthermore, a slight excess of potassium naphthalene can effectively remove the trace of water and oxygen in the reaction system. Under this condition, mPEG was nearly quantitatively obtained without containing diol PEG. Its Mn ranged from 1 to 30 kDa and the polydispersity was kept lower than 1.07. Characterization of the mPEG obtained was carried out using GPC to determine the content of diol PEG and 1H‐NMR and MALDI‐ToF MS spectroscopic analysis to confirm the exact structure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

6.
Biodegradable ABA triblock copolymers with poly(ethylene oxide) and poly(glycolic acid‐valine) blocks were synthesized via ring‐opening polymerization of cyclo(glycolic acid‐valine) using Ca‐alcoholates of hydroxytelechelic PEO as the initiator. The L‐valine residue racemized during copolymerization of cyclo(glycolic acid‐valine). The crystallization of the block copolymers decreases with decreasing PEO content in the triblock copolymers and with increasing length of the poly(glycolic acid‐valine) block. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2916–2919, 2002  相似文献   

7.
Understanding the underlying role of microstructural design in polymers allows for the manipulation and control of properties for a wide range of specific applications. As such, this work focuses on the study of microstructure–property relationships in l‐ lactide/?‐caprolactone (LL/CL) copolymers. One‐step and two‐step bulk ring‐opening polymerization (ROP) procedures were employed to synthesize LL/CL copolymers of various compositions and chain microstructures. In the one‐step procedure, LL and CL were simultaneously copolymerized to yield P(LL‐stat‐CL) statistical copolymers. In the two‐step procedure, poly(l‐ lactide) (PLL) and poly(?‐caprolactone) (PCL) prepolymers were synthesized in the first step before CL and LL respectively were added in the second step to yield P[LL‐b‐(CL‐stat‐LL)‐b‐LL] and P[CL‐b‐(LL‐stat‐CL)‐b‐CL] block copolymers as the final products. The findings reveal that, in addition to the copolymerization procedure employed, the length and type of the prepolymer play important roles in determining the chain microstructure and thereby the overall properties of the final copolymer. Moreover, control over the degree of crystallinity and the type of crystalline domains, which is controlled during the polymer chemistry process, heavily influences the physical and mechanical properties of the final polymer. In summary, this work describes an interesting approach to the microstructural design of biodegradable copolymers of LL and CL for potential use in biomedical applications. © 2019 Society of Chemical Industry  相似文献   

8.
Three different ABA‐type triblock copolymers each containing biodegradable aliphatic polycarbonate as the middle block and poly(l ‐lactide) as the outer blocks were synthesized and the influence of the methylene chain length of the aliphatic polycarbonate middle block on various properties of the triblock copolymers was evaluated. Differential scanning calorimetry and wide‐angle X‐ray diffraction studies revealed that the incorporation of the outer blocks reduced the crystallinity of the middle aliphatic polycarbonate block. Variation of methylene chain length of the middle block led to a change in morphology from spherical to cylindrical as evidenced from atomic force microscopy studies. In addition, the mechanical properties of the block copolymers showed semi‐ductile to quasi‐brittle behaviour depending upon the composition of the middle block which was also confirmed using scanning electron microscopy. Dynamic mechanical analysis of the triblock copolymers indicated that storage modulus increased with a decrease in methylene chain length. © 2018 Society of Chemical Industry  相似文献   

9.
Hexa‐armed star‐shaped poly(ε‐caprolactone)‐block‐poly(L ‐lactide) (6sPCL‐b‐PLLA) with dipentaerythritol core were synthesized by a two‐step ring‐opening polymerization. GPC and 1H NMR data demonstrate that the polymerization courses are under control. The molecular weight of 6sPCLs and 6sPCL‐b‐PLLAs increases with increasing molar ratio of monomer to initiator, and the molecular weight distribution is in the range of 1.03–1.10. The investigation of the melting and crystallization demonstrated that the values of crystallization temperature (Tc), melting temperature (Tm), and the degree of crystallinity (Xc) of PLLA blocks are increased with the chain length increase of PLLA in the 6sPCL‐b‐PLLA copolymers. On the contrary, the crystallization of PCL blocks dominates when the chain length of PLLA is too short. According to the results of polarized optical micrographs, both the spherulitic growth rate (G) and the spherulitic morphology are affected by the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
A series of poly(5,5‐dimethyl‐1,3‐dioxan‐2‐one)‐block‐methoxy poly(ethylene glycol) (PDTC‐b‐mPEG) copolymers were synthesized by the ring‐opening polymerization of 5,5‐dimethyl‐1,3‐dioxan‐2‐one (DTC) in bulk, using methoxy poly(ethylene glycol) (mPEG) as initiator without adding any catalysts. The resulting copolymers were characterized by Fourier transform infrared spectra, 1H NMR and gel permeation chromatography. The influences of some factors such as the DTC/mPEG molar feed ratio, reaction time and reaction temperature on the copolymerization were investigated. The experimental results showed that mPEG could effectively initiate the ring‐opening polymerization of DTC in the absence of catalyst, and that the copolymerization conditions had a significant effect on the molecular weight of PDTC‐b‐mPEG copolymer. In vitro drug release study demonstrated that the amount of indomethacin released from PDTC‐b‐mPEG copolymer decreased with increase in the DTC content in the copolymer. © 2013 Society of Chemical Industry  相似文献   

11.
Poly ε‐caprolactone‐polystyrene block‐copolymers (PCL‐b‐PSt) were synthesized using a modified titanium catalyst as the dual initiator. Alcoholysis of Ti(OPr)4 by 4‐hydroxy 2,2,6,6 tetramethyl piperidinyl‐1‐oxyl (HO‐TEMPO) gave a bifunctional initiator Ti(OTEMPO)4. Poly ε‐caprolactone prepolymer end‐capped with the nitroxide group was first prepared by ring opening polymerization of ε‐caprolactone with this initiator at high conversion. The nitroxide‐end‐capped structure and molar mass (Mn) of the polymers were demonstrated by typical UV absorption band. This analytical technique indicates a near‐quantitative nitroxide functionality and a Mn in good agreement with size exclusion chromatography (SEC) ones. This polyester prepolymer was used to further initiate the radical polymerization with styrene and reach the block copolymers (PCL‐b‐PSt). All the prepolymers and block copolymers were characterized by SEC and NMR spectroscopy. Additionally, the preparation of star polymers bearing two kinds of arms (PCL and PSt) was envisaged and a preliminary result was given. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
A series of sulfonated poly(phosphazene)‐graft‐poly(styrene‐co‐N‐benzylmaleimide) (PP‐g‐PSN) copolymers were prepared via atom transfer radical polymerization (ATRP), followed by regioselective sulfonation which occurred preferentially at the poly(styrene‐co‐N‐benzylmaleimide) sites. The structures of these copolymers were confirmed by Fourier transform infrared (FTIR) spectroscopy, 1H‐NMR, and 31P‐NMR, respectively. The resulting sulfonated PP‐g‐PSN membranes showed high water uptakes (WUs), low water swelling ratios (SWs), low methanol permeability coefficients, and proper proton conductivities. In comparison with non‐grafting sulfonated poly(bis(phenoxy)phosphazene) (SPBPP) membrane previously reported, the present membranes displayed higher proton conductivity, significantly improved the thermal and oxidative stabilities. Transmission electron microscopy (TEM) observation showed clear phase‐separated structures resulting from the difference in polarity between the hydrophobic polyphosphazene backbone and hydrophilic sulfonated poly(styrene‐co‐N‐benzylmaleimide) side chains, indicating effective ionic pathway in these membranes. The results showed that these materials were promising candidate materials for proton exchange membrane (PEM) in direct methanol fuel cell (DMFC) applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42251.  相似文献   

13.
Polyurethanes with multiblock copolymers of poly(?‐caprolactone) (PCL) and poly(tetramethylene oxide) glycol (PTMG) or poly(ethylene glycol) (PEG) as a soft segment were synthesized in situ via reactive extrusion from ?‐caprolactone (CL) and 4,4′‐diphenylmethane diisocyanate (MDI). The titanium alkoxide mixture generated from an ester‐exchange reaction between titanium propoxide [Ti(OPr)4], and excessive PTMG or PEG was used as an initiator and catalyst. Compared to the reported fabrication of polycaprolactone‐based polyurethane (PCLU), the in situ reactive extrusion preparation not only explored a new rapid route for the fabrication of PCLU but also offered a simplified, controllable approach for the production of PCLU in a successive mass scale. A series of PTMG–PCLUs and PEG–PCLUs with different PCL block‐average degrees of polymerization (DPn's) were prepared by only an adjustment of the relative concentration of CL in the reaction system, with a certain constant molar ratio of MDI to titanium alkoxide. 1H‐NMR, gel permeation chromatography, and differential scanning calorimetry results indicate that all of the CL monomers were converted in the polymerization, and the molecular weight of the copolymers was about 8 × 104 g/mol with a polydispersity index of approximate 2.4. With an increase in the PCL block‐average DPn in PTMG–PCLU from 25 to 40, the tensile strength increased from 16.5 to 22.7 MPa, and the melting point increased from 46.1 to 49.5°C. It was also verified by PEG–PCLU prepared with organic Ti of lowered content in the initiator mixture that the mechanical properties could be greatly affected and dropped with decreasing content of organic Ti in the initiator mixture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
A new PDMS macroinitiator is proposed for the anionic ring‐opening polymerization of lactams. This α,ω‐dicarbamoyloxy caprolactam PDMS macroinitiator was readily obtained in quantitative yield, by an original synthesis scheme in two steps, which involved the scarcely reported reaction of isocyanates with silanol groups. It was then shown that this bifunctional macroinitiator enabled to synthesize triblock copolymers PA12‐b‐PDMS‐b‐PA12 by polymerization of lauryl lactam (LL) at high temperature (200°C) in inert atmosphere under conditions compatible with reactive extrusion processes. Another related high molar weight α,ω‐diacyllactam PDMS macroinitiator was also successfully used in the polymerization of LL under the same conditions, therefore overcoming the limitations formerly reported for this type of macroinitiators during the polymerization ε‐caprolactam (ε‐CL) at a much lower temperature (80°C). Triblock copolymers with a wide range of PA12 /molar weights (Mn: ~ 10,800–250,000 Da) were eventually obtained by using both types of macroinitiators. DMTA and DSC analyses showed that their thermal properties were strongly dependent upon their respective contents in soft and hard blocks. Such triblock copolymers already appear very promising for the highly effective in situ compatibilization of PA12/PDMS blends as shown by recent complementary results obtained in our laboratory. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2818–2831, 2006  相似文献   

15.
To improve dispersibility of silica nanoparticle in organic solvents, the grafting of poly(L ‐lactide) (PLLA) onto silica nanoparticle surface by ring‐opening polymerization of L‐lactide (LA) was investigated in the presence of an amidine base catalyst. The ring‐opening polymerization of LA successfully initiated in the presence of silica having amino groups (silica‐NH2) and an amidine base catalyst to give PLLA‐grafted silica, but not in the presence of untreated silica (silica‐OH). In the absence of the amidine base catalyst no ring‐opening polymerization of LA even in the presence of silica‐NH2 and no grafting of PLLA onto silica were observed. It became apparent that the amidine base catalyst acts as an effective catalyst for the ring‐opening graft polymerization of LA from the surface of silica‐NH2. In addition, it was found that the percentage of PLLA grafting onto silica could be controlled according to the reaction conditions. The average particle size of PLLA‐grafted silica was smaller than that of silica‐NH2. Therefore, it was considered that the aggregation structure of silica nanoparticles was considerably destroyed by grafting of PLLA onto the surface. The PLLA‐grafted silica gave a stable dispersion in polar solvents, which are good solvents for PLLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Well‐defined multiarmed star random and block copolymers of ε‐caprolactone with l ‐lactide with controlled molecular weights, low polydispersities, and precise numbers of arms were synthesized by the ring‐opening polymerization of respective cyclic ester monomers. The polymers were characterized by 1H‐NMR and 13C‐NMR to determine their chemical composition, molecular structure, degree of randomness, and proof of block copolymer formation. Gel permeation chromatography was used to establish the degree of branching. Star‐branched random copolymers exhibited lower glass‐transition temperatures (Tg's) compared to a linear random copolymer. When the star random copolymers were melt‐blended with poly(l ‐lactic acid) (PLA), we observed that the elongation of the blend increased with the number of arms of the copolymer. Six‐armed block copolymers, which exhibited higher Tg's, caused the maximum improvement in elongation. In all cases, improvements in the elongation were achieved with no loss of stiffness in the PLA blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43267.  相似文献   

17.
Two families of acid functional styrene/acrylonitrile copolymers (SAN) for application as dispersed phase barrier materials in poly(ethylene) (PE) were studied. One type is SAN made by nitroxide mediated polymerization (NMP), which was subsequently chain extended with a styrene/tert‐butyl acrylate (S/tBA) mixture to provide a block copolymer (number average molecular weight Mn = 36.6 kg mol?1 and dispersity ? = 1.34, after which the tert‐butyl protecting groups were converted to acid groups (SAN‐b‐S/AA). The other acid functional SAN is made by conventional radical terpolymerization (SAN‐AA). SAN‐AA and SAN‐b‐S/AA were each melt blended with PE grafted with epoxy functional glycidyl methacrylate (PE‐GMA) at 160 °C in a twin screw extruder (70:30 wt % PE‐GMA:SAN co/terpolymer). The non‐reactive PE‐g‐GMA/SAN blend had a volume to surface area diameter = 3.0 μm while the reactive blends (via epoxy/acid coupling) (PE‐GMA/SAN‐b‐SAA and PE‐GMA/SAN‐AA) had = 1.7 μm and 1.1 μm, respectively. After thermal annealing, the non‐reactive blend coarsened dramatically while the reactive blends showed little signs of coarsening, suggesting that the acid/epoxy coupling was effective for morphological stability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44178.  相似文献   

18.
Growth‐hormone‐releasing peptide 6 (GHRP‐6) plays an important role in animal growth. However, there have been few studies focusing on the effect of GHRP‐6 on animal growth through controlled release systems. We synthesized the poly(lactic‐co‐glycolic acid) (PLGA)–poly(ethylene glycol) (PEG)–PLGA copolymer to investigate its controlled released effect on GHRP‐6 in vitro and to study the effect of a GHRP‐6–copolymer hydrogel on the growth of rex rabbits. The copolymer was synthesized with ring‐opening copolymerization and characterized by 1H‐NMR. The interaction between GHRP‐6 and the copolymer was characterized by Fourier transform infrared spectroscopy and X‐ray diffraction. The body weight, serum level of insulin‐like growth factor 1 (IGF‐1), and hair coat quality were studied in rex rabbits. The results show that hydrogen bonds formed between the N? H group in GHRP‐6 and the C?O group in the copolymer. The release mechanism of GHRP‐6 was a combination of a diffusion‐controlled mechanism and an erosion‐controlled mechanism in the copolymer. The serum level of IGF‐1, hair coat quality, and body weight were all significantly higher in the GHRP‐6–copolymer hydrogel group than in the other groups. These results indicate that the copolymer effectively controlled the release of GHRP‐6. In addition, the GHRP‐6–copolymer hydrogel increased the synthesis of IGF‐1 for a prolonged period and, thereby, increased the rex rabbits' growth and hair coat quality. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40185.  相似文献   

19.
The main objective of this work has been to study the effects of copolymer microstructure, both chemical and physical, on the microporosity, in vitro hydrolytic degradability and biocompatibility of electrospun poly(l ‐lactide‐co‐ε‐caprolactone), PLC, copolymer tubes for potential use as absorbable nerve guides. PLC copolymers with L : C compositions of 50 : 50 and 67 : 33 mol % were synthesized via the ring‐opening copolymerization of l ‐lactide (L) and ε‐caprolactone (C) at 120°C for 72 h using stannous octoate (tin(II) 2‐ethylhexanoate) and n‐hexanol as the initiating system. Electrospinning was carried out from solution in a dichloromethane/dimethylformamide (7 : 3 v/v) mixed solvent at room temperature. The in vitro hydrolytic degradation of the electrospun PLC tubes was studied in phosphate buffer saline over a period of 36 weeks. The microporous tubes were found to be gradually degradable by a simple hydrolysis mechanism leading to random chain scission. At the end of the degradation period, the % weight retentions of the PLC 50 : 50 and 67 : 33 tubes were 15.6% and 70.2%, respectively. Pore stability during storage as well as cell attachment and proliferation of mouse fibroblast cells (L929) showed the greater potential of the PLC 67 : 33 tubes for use as temporary scaffolds in reconstructive nerve surgery. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4357–4366, 2013  相似文献   

20.
A series of amine‐functionalized block copolymers, poly(caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), were synthesized by ring‐opening bulk polymerization (ROP) of ε‐caprolactone (ε‐CL) initiated through the hydroxyl end of the amino poly(ethylene glycol) (PEG) used as a macroinitiator in the presence of stannous 2‐ethylhexonoate [Sn(Oct)2]. The polymerization and end functionality of the polymer were studied by different physicochemical techniques (1H NMR, Fourier transform infrared and X‐ray photoelectron spectroscopy, gel permeation chromatography and thermogravimetric analysis). Thermal, crystalline and mechanical properties of the polymer were thoroughly analyzed using differential scanning calorimetry, wide‐angle X‐ray diffractometry and tensile testing, respectively. The results showed a linear improvement in crystallinity and mechanical properties of the polymer with the content of PEG. Thus the synthesized functional polymers can be used as excellent biomaterials for the delivery of polyanions, as well as macroinitiators for the synthesis of A–B–C‐type block copolymers. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号