首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiwalled carbon nanotubes (MWCNTs)/poly(N‐isopropylacrylamide‐co‐acrylic acid) composite microhydrogels are simply synthesized with controllable size distribution via a microfluidic reactor system. Monomers (N‐isopropylacrylamide and acrylic acid) are rapidly copolymerized (about 3 s) with the embedding of nanoscaled inorganic materials (MWCNTs and hectorites) in microfluidic channels. MWCNTs/hectorites act as “molecular heater” and inorganic crosslinkers in this hydrogel system. As a result, microminiaturization, multifunctionalizaion, and modification of traditional polymer hydrogels are realized simultaneously. Fourier transform infrared spectroscopy is used to confirm polymerization and environment‐sensitive tests are done as well. The resultant microgels exhibit dual near‐infrared and pH response with good reversibility, indicating their potential applications in microreactor fields. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Polychloromethylstyrene (PCMS)‐block‐polystyrene (PS) copolymers were prepared by controlled free‐radical polymerization in the presence of 2,2,6,6‐tetramethylpiperidinooxy and 2,2′‐azobisisobutyronitrile (AIBN) initiator. The PCMS‐b‐PS copolymers had narrow molecular weight distributions, and the block lengths were controlled by the reaction time and the molar ratios of chloromethylstyrene/AIBN and styrene/PCMS macroinitiator. The block copolymers were further quaternized with triethylamine. The amphiphilic cationic block copolymers formed colloidal particles; the effects of the pH value, salt concentration, and solvent polarity on the particle size were investigated with a dynamic light scattering analyzer. The average colloid size increased with increasing pH value and salt concentration. This implied that the colloid formed a protonated hydrophilic shell and hydrophobic styrene core in water. Furthermore, with the addition of tetrahydrofuran to the aqueous solution, the styrene segments in the core could be inverted to the outside of the colloid. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
The bulk modification of SBS rubber with maleic anhydride in a mixing chamber of a Haake rheomixer was studied. The effect of temperature, maleic anhydride, and benzoyl peroxide concentrations on the grafting efficiency was evaluated. High grafting efficiency was achieved when the ratio of peroxide and maleic anhydride concentration was high. On the other hand, on this condition high insoluble fraction was generated. The addition of a diamine, 4,4′‐diaminediphenylmethane to the reaction mixture minimizes the amount of insoluble polymer. However, the grafted MAH content also decreases. The graft copolymer was characterized by infrared spectroscopy and the grafting extension was determined by titration. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2953–2960, 2002; DOI 10.1002/app.10355  相似文献   

4.
A novel superabsorbent composite, poly(acrylic acid‐co‐acrylamide)/potassium humate (PAA‐AM/KHA), was prepared by aqueous solution polymerization from acrylic acid, acrylamide, and potassium humate (KHA) with N,N′‐methylenebisacrylamide as a crosslinker and potassium peroxydisulfate as an initiator. The effects of incorporated KHA on the water absorbency, swelling rate, and reswelling capability were investigated. The swelling property of PAA‐AM/KHA in various saline solutions was studied systematically. The results show that the comprehensive properties and especially salt‐resistant ability of PAA‐AM/KHA were enhanced. There was a linear relationship between the saturated water absorbency and the minus square root of the ionic strength of the external medium, and the water absorbency of PAA‐AM/KHA in various salt solutions had the following order: NH4Cl(aq) = KCl(aq) = NaCl(aq) > MgCl2(aq) > CaCl2(aq) > AlCl3(aq) > FeCl3(aq). Moreover, the polymeric net structure of PAA‐AM/KHA was examined with respect to that of poly(acrylic acid‐co‐acrylamide). The results indicate that the polymeric net of PAA‐AM/KHA was improved by the introduction of a moderate amount of KHA into the superabsorbent composite and made more suitable for agriculture and horticulture applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

5.
Thermo‐induced multishape memory polymers are a growing focus of smart materials because of its promising applications. Multishape memory effect is generally attained by using polymers with broad phase transition and multiphase polymers. The latter is of particular interest for copolymerization and polymer compositing. One requirement has to be fulfilled to achieve multishape memory effect, which is to have two reversible phase transitions. In this study, we report synthesis of polymer composite composed of strong segregated polymers by using reaction‐induced phase separation. We demonstrate the method by using polyurethane (PU) and poly(methacrylic acid) (PMAA). With adjusting the weight ratio, the polymer composites exhibit a phase spectrum from phase separation to miscible composite. The composite with PU/PMAA =3:1 demonstrated triple‐shape memory effect. Based on the results, we argued the effect of segregation on the shape memory effect for polymer composites. With the addition of PMAA, the polymer composite also exhibits pH/water‐induced shape memory effect. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43534.  相似文献   

6.
A novel organic–inorganic hybrid flocculant PAC-AM-DMC is synthesized using potassium persulfate as an initiator, which was used in industrial wastewater treatment. Comparing with the traditional inorganic flocculant, this new flocculant has the advantage of low dosage and high efficiency. Simultaneously, it is less toxic and more environmentally friendly than the organic flocculant. The organic–inorganic hybrid flocculant PAC-AM-DMC demonstrates better flocculation than the commercial single type flocculant (PAC, PAM), and the effect is better than simply combining the two flocculants. It has potential for commercialization. When PAC:(AM + DMC) = 2:8, the initiator is 0.2 wt%, and the flocculant obtained by reacting at 50°C for 4 h has the best effect on sewage treatment. When the pH is 7, the treatment effect of PAC-AM-DMC is best with the dosage of 10 ppm. Correspondingly, the amount of flocculant is 10 mg/L, and the turbidity of simulated sewage is 172 nephelometric turbidity unit (NTU), which is over 98% of turbidity removal efficiency. In addition, the prepared hybrid flocculant is nearly non-corrosive and posed little damage to the equipment. And the hybrid flocculant has excellent salt resistance.  相似文献   

7.
Methyl acrylate/acrylonitrile copolymers (MA/AN) were reactively compatibilized as the dispersed phase into poly(ethylene) (PE) for potential hydrocarbon barrier materials. The MA/AN was made reactive by including p‐aminostyrene (PAS), yielding terpolymers (MA/AN/PAS) with pendant primary amine functionality (number average molecular weight = 65–133 kg mol?1, dispersity (?)=1.83–2.53, molar composition of PAS in copolymer FPAS = 0.03–0.14, molar composition of AN = FAN = 0.27–0.52). The non‐functional MA/AN and amino functional MA/AN/PAS were each melt blended into PE that was grafted with maleic anhydride (PE‐g‐MAnn) at 200 °C at 70:30 wt % PE‐g‐MAnn:co/terpolymer. After extrusion, the dispersed phase particle size (volume to surface area diameter, ) was coarse (12.6 μm) for the non‐reactive blend whereas it was much lower for the reactive blend ( = 1.2 μm). Coarsening after annealing at 150 °C was slow, but the domain sizes increased only slightly for both cases. The reactive blend was deemed sufficiently stable and thus was suitable as a candidate barrier material for further testing against olefins. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44177.  相似文献   

8.
We study three new classes of olefin‐based polymer, low‐molecular‐weight homopolypropylene (LMW‐hPP), syndiotactic‐rich polypropylene (srPP), and random propylene polymer (RPP). RPP is a random propylene/ethylene copolymer. By blending LMW‐hPP with 20 wt % of a maleic anhydride (MA) functionalized srPP (MA‐srPP) or MA functionalized RPP (MA‐RPP) instead of a commercial MA‐iPP (maleic anhydride‐grafted‐isotactic polypropylene), adhesion to a polar substrate, such as polyester (Mylar), is greatly enhanced. Effects of crystallinity controlled by either stereoregularity or comonomer incorporation and molecular weight of these MA functionalized propylene‐based polymers on adhesive performance are discussed. To further understand the mechanisms of enhanced adhesion, Sum Frequency Generation (SFG) spectroscopy is used to evaluate the migration of MA‐srPP in LMW‐hPP towards the interface when contacting a polar sapphire substrate. It shows that the buried interface between the LMW‐hPP/MA‐srPP blend (wt ratio = 80/20) and sapphire has the same characteristic spectrum as the MA‐srPP/sapphire interface, suggesting the enrichment of MA‐srPP in the interfacial polymer when the blend is in contact with sapphire. Also, vibrational modes of C=O have been detected at both the blend/sapphire and MA‐srPP/sapphire interfaces, further indicating that the interfacial polymer contains MA groups. Besides Mylar, adhesion to the non‐polar iPP substrate is also studied. The adhesion mechanisms to these polar and non‐polar substrates are explained in terms of our adhesion model. Applications of these MA functionalized polyolefins and blends are envisioned in the tie‐layer and adhesive areas. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39855.  相似文献   

9.
The objectives of this present article are to design and compare novel acrylic‐fluorine networks as the replacement of fluorinated polyacylate for adhesives application. Firstly, two effective strategies have been developed to achieve functional poly(VDF‐co‐HFP) copolymers based on commercial fluoropolymers. The first approach extensively involved the facile chemical degradation of commercial poly(VDF‐co‐HFP) copolymers to obtain telechelic cooligomers. The second route dealt with the preparation of functional fluoropolymers grafted by multiplex acrylate. Then these two functional and original products were applied as precursors of acrylic‐fluorine hybrid networks in situ polymerization with acrylic monomers. In contrast to original fluoropolymers, functional poly(VDF‐co‐HFP) copolymers exhibited better compatibility with acrylic chain, especially after crosslinking by aluminium acetylacetonate. Additionally, the surface properties of acrylic‐fluorine hybrid networks were discussed based on the SEM and contact angle test. Finally, the peel strength and shear holding power measurements indicated that acrylic‐fluorine hybrid networks can find their potential applications in low surface energy fluorinated PSAs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46038.  相似文献   

10.
Firstly, cerium dioxide(CeO2) was modified by 3-(Methylacryloxyl)propyltrimethoxy silane (KH-570), and modified CeO2 (mCeO2) was prepared. Then poly (urethane-acrylate) was modified by mCeO2, and poly (urethane-acrylate)/modified CeO2 (PUA/mCeO2) composites with ultraviolet absorption property were prepared. The morphology, thermal hydrophobicity, mechanical properties, optical properties, and UV-absorption properties of PUA/mCeO2 composites were studied. XRD and SEM analysis showed that the modified CeO2 had better dispersion in the matrix than that of pure CeO2. Ultraviolet–visible spectrum and thermogravimetric analysis were used to characterize the optical properties and thermal stability of PUA/mCeO2 composites. The results showed that with the increasing of the mCeO2 content, the UV-absorption property of PUA/mCeO2 composites was improved gradually. When the content of mCeO2 is 3%, the absorption of ultraviolet of PUA/mCeO2 composites is about 5 times of pure PUA film, and the absorption band is mainly in the UVA section. The thermal stability of PUA/mCeO2 composites was improved with the adding of mCeO2. With the increasing of mCeO2 content, the contact angle of PUA/mCeO2 composites increased significantly. And the UV-absorption mechanism of PUA/mCeO2 Composites was studied. UV-curable PUA/mCeO2 composites have good UV absorption property and water resistance. They will be used in the sun screen and protect people's skin.  相似文献   

11.
The functionalization reactions of ethylene–propylene–diene monomer rubber (EPDM) with maleic anhydride (MAH) in melt state through high‐shear‐stress‐induced initiation by an increase in the screw rotation speed of the twin‐screw extruder and through compounded initiation by the addition of some initiator and an increase in the screw rotation speed were investigated. The results show that, with increasing screw rotation speed and reaction temperature, the percentage grafting and melt flow rate of the functionalized products (EPDM‐g‐MAH) were noticeably increased, and the viscosity‐average molecular weight decreased, which implied that the grafting reaction consisted of the chain scission and grafting reaction of the produced macroradicals with MAH. In the presence of a certain peroxide initiator, the crosslinking reaction during melt extrusion was suppressed by an increase in the screw rotation speed. The percentage grafting of EPDM‐g‐MAH amounted to 1.1%, its melt flow rate was between 0.3 and 4.0 g/10 min, and its gel content was less than 1.0%, depending on the screw rotation speed and reaction temperature. Impact testing and scanning electron microscopy showed that the functionalized product prepared through the high shear stress‐induced initiation had a higher blocking activity with the amide terminated of PA66 than that prepared through the peroxide initiation or through the compound initiation, and the impact strength of the PA66/EPDM blends, improved by the high‐shear‐stress‐induced product was noticeably higher than those of the peroxide‐initiated product or the compound‐initiated one. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Two types of new comb‐like polymers were formed as dispersants for aqueous ceramic suspensions with isoprenyloxy poly(ethylene glycol ether), acrylic acid, maleic anhydride as the main starting materials. During the synthesis, one comb‐like polymer introduced sodium methylallyl sulfonate (SMAS) into the reaction media, whereas the other did not. The chemical structure and molecular weight were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography. The effects of the polymers on the dispersion, ζ potential and rheological properties of the kaolin suspensions are discussed in detail. The results indicate that SMAS facilitated chain transfer, controlled the effective charge density of the surface, and increased the electrostatic repulsion force. The kaolin suspensions displayed shear‐thinning behavior on the basis of the electrostatic and steric effects of the comb‐like polymers. The apparent viscosity decreased from 1088 to 258 mPa s with the assistance of the SMAS‐prepared comb‐like polymer as a dispersant. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44563.  相似文献   

13.
Polymeric oxidants in the bead form that were macroporous styrene/divinylbenzene copolymers containing N‐chlorosulfonamide functional groups (in sodium or hydrogen form) or N‐bromosulfonamide groups (in sodium form) were synthesized and investigated to determine their oxidizing powers. The redox potentials of the N‐chlorosulfonamide/sulfonamide and N‐bromosulfonamide/sulfonamide systems were determined by potentiometric studies at different pH values with aqueous solutions of Na2SO3, KCN, and KSCN as reducers. The formal redox potentials of the N‐chlorosulfonamide copolymers were 0.79, 0.44, and ?0.12 V at pH's of 1.8, 8.45, and 13.6, respectively. The formal redox potential of the N‐bromosulfonamide copolymer was about 100 mV higher in comparable conditions and in solutions over pH = 5 (e.g., 0.56 V at pH = 8.56). The comparatively higher oxidizing power of the N‐bromosulfonamide copolymer was particularly evident in a strong alkaline medium (in which the N‐chlorosulfonamide copolymer was not reactive). In contrast, the N‐chlorosulfonamide copolymer showed strong oxidative properties in acidic media (in which the N‐bromosulfonamide copolymer decomposed itself). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

14.
A series of organo‐soluble co‐polyimides (co‐PIs) were successfully synthesized from 3,3′,4,4′‐benzophenonetetracarboxylic‐dianhydride (BTDA), 1,4‐bis‐(4‐amino‐2‐trifluoromethyl‐phemoxy)‐benzene (p‐6FAPB) and 2‐(4‐aminophenyl)‐5‐aminobenzimidazole (BIA) via the one‐pot high‐temperature polymerization using N‐methyl‐2‐pyrrolidone (NMP) as the solvent. The imidization reaction of poly(amic acid)s in solution state was discussed in detail by attenuated total reflectance‐Fourier transform infrared spectra (ATR‐FTIR), and the results illustrate that the introduced benzimidazole moiety has a catalytic activity on the imidization process. The number‐average molecular weights and polydispersity index of these PIs measured by gel permeation chromatography range from 1.11 × 105 to 2.20 × 105 and 1.82 to 3.84, respectively. The prepared co‐PIs exhibit sufficient solubility in some polar solvents and high optical transparency. Meanwhile, these co‐PI films show good mechanical performances, and the strength and modulus of the sample with the molar ratio of p‐6FAPB/BIA = 5/5 reach 183 MPa and 4.71 GPa, respectively. Moreover, the obtained co‐PIs possess high glass transition temperatures (Tg) (above 260 °C) and good thermal stability with 5% weight loss temperature in the range of 502–531 °C in the nitrogen atmosphere. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45497.  相似文献   

15.
The effectiveness of acrylic resins as low formaldehyde emission binders for particleboard production was explored. In particular, a multifunctional methacrylic monomer, ethoxylated bisphenol A dimethacrylate, classified as nonskin and eyes irritant, was selected and tested. In comparison panels realized with classic urea‐formaldehyde (UF) binder were also prepared. No significant differences were found through the morpholocigal analysis of samples prepared with the two different binders. Moreover, particleboard panels realized with the acrylic binder showed better mechanical properties and lower water absorption and thickness swelling in comparison with corresponding panels realized with the UF binders. Furthermore, the replacement of the UF with the acrylic binder did not affect thermal insulation properties of the panels. Formaldehyde release tests revealed that particleboard panels obtained by applying the acrylic binder can be classified as E1 following the European classification and even F**** following the stricter Japanese classification. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
In this work, two monomers, acrylamide (AM) and [2‐(methacryloyloxy)ethyl]trimethylammonium chloride (DMC) were copolymerized from kraft lignin (KL) in an aqueous suspension initiated by free radical copolymerization in the presence of potassium persulfate. The impact of copolymerization conditions on the charge density and molecular weight of the copolymers was investigated. The molecular weight and mass balance analyses confirmed that the homopolymer [polyDMC (PDMC) and polyAM (PAM)] and undesired copolymer (AM–DMC) productions dominated as time, initiator, and DMC dosage increased more than the optimum values. The activation energy of the polymerization of KL and AM (43.02 kJ mol?1), KL and DMC (21.99 kJ mol?1), AM (14.54 kJ mol?1), DMC (10.34 kJ mol?1), and AM and DMC (18.13 kJ mol?1) was determined. Proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis confirmed the production of KL–AM–DMC copolymer. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46338.  相似文献   

17.
In this study, four biorefinery technical lignins were used to synthesize lignin–phenol–formaldehyde (LPF) resin adhesives with a proposed formulation that was designed based on accurate analysis of the active sites in lignin with 31P nuclear magnetic resonance (NMR). The properties of the LPF resin adhesives and the plywoods prepared with them were tested. The structural features and curing behavior of the LPF resin adhesives were thoroughly investigated by solution‐ and solid‐state 13C NMR. Results indicated that the proposed formulation exhibited favorable adaptability for all four of these technical lignins for synthesis of LPF resin adhesives. High‐performance plywood with low emissions of formaldehyde could be successfully prepared with the synthesized LPF resin adhesives. All the LPF resin adhesives exhibited similar structure and curing behavior with the commercial phenol–formaldehyde (CPF) resin adhesive. However, the LPF resin adhesives showed relatively higher curing temperatures as compared with the CPF resin adhesive. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42493.  相似文献   

18.
In this study, the synthesis of polypyrrole‐b‐vinyl aniline modified cyclohexanone formaldehyde resin (PPy‐b‐CFVAnR) block copolymers by a combination of condensation polymerization and chemical oxidative polymerization processes was examined. First, a cyclohexanone formaldehyde resin containing vinyl aniline units [4‐ vinyl aniline modified cycl?ohexanone formaldehyde resin (CFVAnR)] was prepared by a direct condensation reaction of 4‐vinyl aniline and cyclohexanone with formaldehyde in an in situ modification reaction. CFVAnR and pyrrole (Py) were then used with a conventional method of in situ chemical oxidative polymerization. The reactions were carried out with heat‐activated potassium persulfate salt in the presence of p‐toluene sulfonic acid in a dimethyl sulfoxide–water binary solvent system; this led to the formation of desired block copolymers. The effects of the oxidant–monomer molar ratio, dopant existence, addition order of the reactants, and reaction temperature on the yield, conductivity, and morphology of the resulting products were investigated. PPy‐b‐CFVAnR copolymers prepared with a resin‐to‐Py molar ratio of 1:40 showed conductivity in the range 3.7 × 10?1 to 3.8 × 10?2 S/cm. Oxidant‐to‐Py molar ratios of 0.5 and 1.0 were proposed to be the optimum stoichiometries for higher conductivity and yield, respectively, of the copolymer. The morphology of the copolymer (PPy‐b‐CFVAnR) was investigated with environmental scanning electron microscopy analyses. The results indicate that the surface of the copolymer was composed of well‐distributed nanospheres with average particle diameters of 60–85 nm. Also, the synthesized PPy‐b‐CFVAnR had a higher thermal stability than the pure CFVAnR. The chemical composition and structure of the PPy‐b‐CFVAnR copolymers were characterized by Fourier transform infrared spectroscopy and measurement. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42841.  相似文献   

19.
Highly selective composite imprinted membrane for p‐hydroxybenzonic acid (p‐HB) was prepared by using semicovalent imprinting technique. A thermally reversible covalent bond was used to link p‐HB molecule to a functional alkoxysilane monomer to generate covalently bound imprint precursor. This precursor was incorporated into a cross‐linked functional silica sol with the tetraethoxysilane as cross‐linker via a typical acid‐catalyzed, sol‐gel synthesis. Then, the SCIM was prepared through dipping and grafting on the upper side and inner pores of the Al2O3 microporous membrane and then removing of the template molecule after thermal treatment. Compared with composite imprinted membrane via noncovalent imprinting approach as well as the black Al2O3 microporous membrane, the SCIM exhibited higher membrane flux and selective rebinding of p‐HB as well as showing excellent permeability for p‐HB. Response surface methodology was used to investigate the best combination of separation conditions in the dynamic separation process. The optimal conditions for the separation of p‐HB from salicylic acid were as follows: the p‐HB concentration of 5 mg L?1, the temperature of 10°C, and the flow rate of 1 mL min?1. Under these conditions, the experimental selective separation factor was 32.75 ± 0.91%, which was close to the predicted selectivity coefficient value. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40621.  相似文献   

20.
In this study, the copolymerization of ethylene with nonconjugated diene (5‐ethylidene‐2‐norbornene) was carried out with a bis(2‐PhInd) ZrCl2 metallocene catalyst. Some polymerization factors that were considered affective on the catalyst activity, including comonomer content in the feed, ethylene pressure, and polymerization temperature, were investigated via response surface methodology to determine the optimum polymerization conditions. We found that the comonomer content in the feedstock had no enormous effect on the catalyst activity depression. Also, the polymerization temperature increment through the scrutinized range decreased the copolymerization activity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号