首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between morphology and temperature-resistivity effect of injection-molded isotactic polypropylene/high density polyethylene/carbon black (iPP/HDPE/CB) composites with special orientation structure is investigated in detail. The morphological variation induced by melting, disorientation, crystallization and movement of CB particles is responsible for the change of electrical conductivity of the iPP/HDPE/CB composites during the heating and cooling. The room temperature volume resistivity of the composites reduces markedly after a round of heating and cooling because the network is improved through morphological changes and movement of particles during annealing. The continuity of HDPE/CB phase and the effective concentration of the CB particles in HDPE simultaneously determine the temperature-resistivity effects of the composites. Samples with iPP/HDPE mass ratio of 50/50 achieve a better balance of the two factors, which results in more stable conductive properties varying with temperature.  相似文献   

2.
Limited amount of isotactic polypropylene (iPP) is added to high‐density polyethylene (HDPE) containing 1% w/w an oxo‐biodegradable additive and extruded and converted to films. The films are put under UV irradiation for different periods of time. Irradiation of the films for 6 weeks imposes remarkable effects on viscosity average molecular weight (Mv) and carbonyl index (CI) of them. Mv decreases from 3.4 × 105 to 4.7 × 104 g mol?1 for neat HDPE films; from 3.1 × 105 to 3.3 × 104 g mol?1 for the films containing oxo compound, and from 1.5 × 105 to 2.6 × 104 g mol?1 for the films containing oxo compound and 1% w/w iPP. Carbonyl index of the neat HDPE films increases from 4 to 8.7 while for the sample containing only the oxo compound it increases from 4.5 to 7.3 and for the sample containing both oxo compound and iPP it decreases from 12.0 to 8.8. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) indicate more cracks and uniform degradation in the samples containing iPP and oxo compound. Thermogravimetric analysis (TGA/DTG) of the samples shows that the samples containing iPP and oxo compound have lower decomposition temperature after UV irradiation. Finally, it can be said that the presence of iPP in HDPE matrix containing oxo compound can improve HDPE oxo‐biodegradablity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45843.  相似文献   

3.
Linear low density polyethylene/isotactic polypropylene (LLDPE/iPP) blends, with oriented microfibrils of iPP dispersed in the nearly isotropic LLDPE matrix, has been prepared via melt extrusion drawing and subsequent thermal treatment at 160°C to melt LLDPE matrix. The presence of oriented microfibrils of iPP in the LLDPE/iPP blends not only promotes the homogenous deformation, with no drop of nominal stress around yield point, but also enhances the fracture toughness significantly. The specific Essential Work of Fracture we, which is a pure crack resistance parameter per ligament area unit, is 24.7 and 33.6 N/mm for the blends with 15 and 30 wt % microfibrils of iPP, respectively. Moreover, with the deduced deformation parameters, such as true yield stress and strain hardening modulus, the relationship between deformation parameters and fracture toughness is explored. It is demonstrated that the fracture toughness can be well correlated with the ratio of true yield stress to strain hardening modulus σty/G, and either a decrease in yield stress or an increase in strain hardening can improve fracture toughness. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1291–1298, 2007  相似文献   

4.
The relationship between morphology and resistivity–temperature behavior of carbon black (CB) filled isotactic polypropylene/high density polyethylene (iPP/HDPE) composites was investigated. The positive temperature coefficient intensity for all composites studied in this paper was lower than one and the negative temperature coefficient (NTC) effect was obvious. The factors influencing resistivity–temperature behavior include the CB contents, types of the polymer matrices and their composition, which determine the phase morphology and thus the conductive network. The types of iPP and HDPE influenced the NTC effect, while the morphology of the composites mainly influenced the initial volume resistivity of the composites.  相似文献   

5.
Meltrheological behavior, phase morphology, and impact properties of isotactic‐polypropylene (iPP)‐based blends containing ethylene–propylene copolymer (EPR) synthesized by means of a titanium‐based catalyst with very high stereospecific activity (EPRTi) were compared to those of iPP/EPR blends containing EPR copolymers synthesized by using a traditional vanadium‐based catalyst (EPRV). The samples of EPR copolymers were synthesized ad hoc. They were characterized by comparable propylene content, average molecular masses, and molecular mass distribution in order to assess the effects of distribution of composition and sequence lengths of the structural units on the structure–properties correlations established in the melt and in the solid state while studying different iPP/EPR pairs.1–5 Differential scanning calorimetry, (DSC), wide‐angle X‐ray spectroscopy (WAXS), small‐angle X‐ray (SAXS), and scanning electron microscopy (SEM) investigations showed that the EPRTi chain is characterized by the presence of long ethylenic sequences with constitutional and configurational regularity required for crystallization of the polyethylene (PE) phase occurring, whereas a microstructure typical of a random ethylene–propylene copolymer was exhibited by the EPRV copolymer. The different intra‐ and intermolecular homogeneity shown by such EPR phases was found to affect their melt rheological behavior at the temperatures of 200 and 250°C; all the EPRTi dynamic–viscoelastic properties resulting were lower than that shown by the EPRV copolymer. As far as the melt rheological behavior of the iPP/EPRV and iPP/EPRTi blends was concerned, both the iPP/EPR pairs are to be classified as “negative deviation blends” with G′ and G" values higher than that shown by the plain components. The extent of the observed deviation in the viscosity values and of the increase in the amounts of stored and dissipated energy shown by such iPP/EPR pairs was found to be dependent on copolymer microstructure, being larger for the melts containing the EPRTi copolymer. The application of the Cross–Bueche equation also confirmed that, in absence of shear, the melt phase viscosity ratio is the main factor in determining the viscosity of iPP/EPR blends and their viscoelastic parameters. The general correlation established between EPR dispersion degree (range of particle size and number‐average particle size), as determined in injection‐molded samples, and melt phase viscosity ratio (μ) was ratified; the type of dependence of EPR size upon μ value was in qualitative agreement with the prediction of the Taylor–Tomotika theory. Contrary to expectation,1–5 for test temperature close to iPP Tg, EPRV particles ranging in size between 0.75 and 1.25 μm resulted and were more effective than EPRTi particles, ranging in size between 0.25 and 0.75 μm, in promoting multiple craze formation. Also taking into account the SAXS results, revealed that the molecular superstructure (i.e., crystalline lamellar thickness and amorphous interlayer) of the iPP matrix is unaffected by both the presence of EPRTi and EPRV phase. The above finding was related to the ethylenic crystallinity degree shown by the EPRTi copolymer. In particular, such a degree of crystallinity was supposed to deteriorate toughening by decreasing the tie molecules density in the EPRTi domains, notwithstanding the beneficial effect of the ethylenic lamellar buildup. For test temperature close to room temperature, the ductile behavior exhibited by the iPP/EPRTi blends was accounted for by a predominant shear yielding fracture mechanism probably promoted by a high concentration of interlamellar tie molecules among iPP crystallites in agreement with DSC results. Nonisothermal crystallization experiments showed, in fact, that the crystallization peak of the iPP phase from iPP/EPRTi melt is shifted to higher temperatures noticeably, thus indicating a material characterized by a comparatively higher number of spherulites per unit value grown at lower apparent undercooling values. Accordingly, WAXS analysis revealed comparatively higher iPP crystal growth in the directions perpendicular to the crystallographic planes (110) and (040) of the iPP. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 701–719, 1999  相似文献   

6.
The sensitive effect of weight ratio of the high‐density polyethylene (HDPE)/ethylene‐vinylacetate copolymer (EVA) on the electrical properties of HDPE/EVA/carbon black (CB) composites was investigated. With the EVA content increasing from 0 wt % to 100 wt %, an obvious change of positive temperature coefficient (PTC) curve was observed, and a U‐shaped insulator‐conductor‐insulator transition in HDPE/EVA/CB composites with a CB concentration nearby the percolation threshold was found. The selective location of CB particles in HDPE/EVA blend was analyzed by means of theoretical method and scanning electron micrograph (SEM) in order to explain the U‐shaped insulator‐conductor‐insulator transition, a phenomenon different from double percolation in this composite. The first significant change of the resistivity, an insulator‐conductor transition, occurred when the conductive networks diffused into the whole matrix due to the forming of the conductive networks and the continuous EVA phase. The second time significant change of the resistivity, a conductor‐insulator transition, appeared when the amorphous phase is too large for CB particles to form the conductive networks throughout the whole matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
In this study, poly(methyl methacrylate) (PMMA)/carbon black (CB), PMMA/carbon fiber (CF), and PMMA/carbon nanotube (CNT) conductive composite films with different filler concentrations are prepared using the solution casting technique. Both perpendicular and in‐plane direction conductivity of all the binary composite films are investigated, percolation thresholds (?c) of both directions of PMMA/CB, PMMA/CF, and PMMA/CNT composite films are investigated and the experimental data are fitted using McLachlan’s equation. For all the three investigated films, the perpendicular ?c,⊥ and in‐plane ?c,∥ with different fillers show totally different behaviors. Pristine CB, CF, and CNT as well as PMMA/CB, PMMA/CF, and PMMA/CNT composite films are discussed. The gravity effect of the fillers is found to be most significant in the PMMA/CB system. A schematic diagram of PMMA composite films with CB, CF, and CNT as filler prepared from solution casting process is presented to explain the distribution gradient of the fillers in the perpendicular direction of the film after solution casting. A power law behavior is revealed for different filler types (CB, CF, CNT) correlating the exponent t for McLachlan’s equation and corresponding ?c for in‐plane and perpendicular directions.  相似文献   

8.
The electrical resistivity and morphology of high impact polystyrene (HIPS)/styrene‐butadiene‐styrene triblock copolymer (SBS)/carbon black (CB) blends were studied. Their antistatic sheets were prepared by both compression‐molding and extrusion calendaring process, with their surface morphology observed using scanning electron microscopy (SEM). The SEM images reveal better dispersion of CB achieved in extrusion‐calendering, resulting in low percolation threshold values in HIPS composites. Higher compression ratio and higher drawing speed (corresponding lower sheet thickness) are beneficial to get better CB dispersion, leading to decreased conductivity for the antistatic sheets. SEM images indicate that strong shear forces in extrusion tend to break the conductive network of CB, resulting in increased surface resistivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The deformation of the dispersed phase in polystyrene/high density polyethylene (PS/HDPE) blends produced by ribbon extrusion was studied numerically and experimentally. A mathematical model for the deformation of the dispersed phase in ribbon extrusion processing of polymer blends was developed assuming uniaxial deformation of the ribbon and the equilibrium shapes of the dispersed particles with a pressure balance over a drop. Simulated morphologies as function of the post‐extrusion parameters were obtained and compared with experiments. The analysis of the ribbon extrusion process showed that parameters such as draw ratio (DR) and ribbon‐water contact length (X) significantly influence the ribbon dimensions, the extensional stress, and the stretching force. The results also showed that deformation and coalescence of the dispersed phase in the ribbon extrusion processing of polymer blends increase at higher DR and/or lower X values. The comparison between the model and the experimental morphologies of PS/HDPE produced a good agreement.  相似文献   

10.
《Polymer Composites》2017,38(7):1462-1473
Poly(ethylene‐co‐vinyl alcohol)/carbon black (EVOH/CB) composites were prepared by a solvent‐casting saponification (‐D) and precipitation saponification (‐P) methods with a poly(ethylene‐co‐vinyl acetate)/CB (EVA/CB) toluene suspension. The effects of the CB content and saponification time on the morphology, electrical resistivity, thermal, and mechanical properties of EVA/CB composites were examined. The volume resistivity (ρ v) of the EVA/CB‐D and EVA/CB‐P samples decreased significantly with increasing CB content and the percolation threshold of such composites was determined about 10 wt%. At 10 wt% of CB content, the ρ v of EVA/CB‐D composite decreased significantly with the saponification time, whereas ρ v of EVA/CB‐P composites did not change. As the saponification time increased, EVA/CB25wt% composites form cavity structure which CB is usually located in oval cavities larger than the particles themselves. This oval cavity structure almost resembles extruded high‐density polyethylene (HDPE)/CB composites. The morphology and PTC behavior of prepared composites were compared with those of HDPE/CB and the mechanism of PTC and NTC effects was discussed. POLYM. COMPOS., 38:1462–1473, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
This paper reports about the polymerization of ε‐caprolactam monomer in the presence of low molecular weight hydroxyl or isocyanate end‐capped ethylene‐butylene elastomer (EB) elastomers as a new concept for the development of a submicron phase morphology in polyamide 6 (PA6)/EB blends. The phase morphology, viscoelastic behavior, and impact strength of the polymerization‐designed blends are compared to those of similar blends prepared via melt‐extrusion of PA6 homopolymer and EB elastomer. Polyamide 6 and EB elastomer were compatibilized using a premade triblock copolymer PA6‐b‐EB‐b‐PA6 or a pure EB‐b‐PA6 diblock reactively generated during melt‐blending (extrusion‐prepared blends) or built‐up via anionic polymerization of ε‐caprolactam on initiating ? NCO groups attached to EB chain ends (polymerization‐prepared blends). Two compatibilization approaches were considered for the polymerization‐prepared blends: (i) the addition of a premade PA6‐b‐EB‐b‐PA6 triblock copolymer to the ε‐caprolactam monomer containing nonreactive EB? OH elastomer and (ii) generation in situ of a PA6‐b‐EB diblock using EB? NCO precursor on which polyamide 6 blocks are built‐up via anionic polymerization of ε‐caprolactam. The noncompatibilized blends exhibit a coarse phase morphology, either in the extruded or the polymerization prepared blends. Addition of premade triblock copolymer (PA6‐b‐EB‐b‐PA6) to a EB? OH /ε‐caprolactam dispersion led to a fine EB phase (0.14 μm) in the PA6 matrix after ε‐caprolactam polymerization. The average particle size of the in situ reactively compatibilized polymerization‐prepared blend is about 1 μm. The notched Izod impact strength of the blend compatibilized with premade triblock copolymer was much higher than that of the neat PA6, the noncompatibilized, and the in situ reactively compatibilized polymerization blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2538–2544, 2004  相似文献   

12.
Carbon black (CB) filled high‐density polyethylene (HDPE) composites are prepared by ordinary blending for use as an electrical conductive polymer composite. The composite changes from an electrical insulator to a conductor as the CB content is increased from 10 to 20 wt %, which is called the percolation region. For explanatory purposes, three models, namely, “conduction via nonohmic contacting chain,” “conduction via ohmic contacting chain,” and a mixture of them corresponding to the conductions in the percolation region, high CB loading region, and limiting high CB loading are proposed by the reasonable configurations of aggregate resistance, contact resistance, gap capacitance, and joining aggregates induction. The characters of the impedance spectra based on the three models are theoretically analyzed. In order to find some link between the electrical conductivity and the CB dispersion manner in the composites, the impedance spectra of three samples, HDPE/15 wt % CB (the center of the percolation region), HDPE/25 wt % CB (a typical point in the high CB loading region), and HDPE/19 wt % CB (the limiting high CB loading region), are measured by plotting the impedance modulus and phase angle against the frequency and by drawing the Cole–Cole circle of the imaginary part and real part of the impedance modulus of each sample. The modeled approached spectra and the spectra measured on the three samples are compared and the following results are found: the measured impedance spectrum of HDPE/15 wt % CB (percolation region) is quite close to the model of conduction via nonohmic contacting chain. The character of the measured spectrum of HDPE/25 wt % CB consists of the form of the model of conduction via ohmic contacting chain. The impedance behavior of HDPE/19 wt % CB exhibits a mixture of the two models. From the comparisons, it is concluded that the electrical conducting network in the percolation region of the CB filled HDPE composite is composed of aggregate resistance, nonohmic contact resistance, and gap capacitance, and that of the high CB loading region consists of continuously joined CB aggregate chains, which are possibly wound and assume helix‐like (not straight lines) conductive chains, acting as electrical inductions as the current passes through. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1344–1350, 2005  相似文献   

13.
Positive temperature coefficient to resistivity characteristics of high density polyethylene (HDPE)/silver (Ag)‐coated glass bead (45 wt%) composites, without and with nanoclay, has been investigated with reference to HDPE/carbon black (CB) (10 wt%) composites. Plot of resistivity versus temperature of HDPE/CB (10 wt%) composites showed a sudden rise in resistivity (PTC trip) at ≈128°C, close to the melting temperature (Tm) of HDPE. However, for HDPE/Ag coated glass bead (45 wt%) composites, the PTC trip temperature (≈88°C) appeared well below the Tm of HDPE. Addition of 1 phr clay in the composites resulted in an increase in PTC trip temperature of HDPE/Ag‐coated glass bead (45 wt%) composites, whereas no significant effect of clay on PTC trip temperature was evident in HDPE/CB/clay composites. We proposed that the PTC trip temperature in HDPE/Ag‐coated glass bead composites was governed by the difference in coefficient of thermal expansion of HDPE and Ag‐coated glass beads. The room temperature resistivity and PTC trip temperature of HDPE/Ag‐coated glass bead (45 wt%) composites were found to be very stable on thermal cycling. Dynamic mechanical analyzer results showed higher storage modulus of HDPE/Ag‐coated glass bead (45 wt%) composites compared with the HDPE/CB (10 wt%) composites. Thermal stability of HDPE/Ag‐coated glass bead (45 wt%) composites was also improved compared with that of HDPE/CB (10 wt%) composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
The influence of two‐stage drawing conditions on the ultradrawing behavior of the gel films of ultrahigh‐molecular‐weight polyethylene/low‐molecular‐weight polyethylene blends is reported in this article. The critical draw ratios (λc) of the gel films prepared near their critical concentrations were found to depend significantly on the draw ratio attained in the first drawing stage (D1r) and on the temperature utilized in the second drawing stage (Tsec). After drawing the gel films to a fixed draw ratio in the first drawing stage, each two‐stage drawn gel film was made to exhibit a maximum λccmax) by drawing the drawn gel film at its corresponding optimum Tsec. In addition, the optimum Tsec was found to increase significantly with the D1r value of the drawn gel films. It is worth noting, on the other hand, that the λcmax of two‐stage drawn gel films increased consistently with an increasing D1r until its value reached an optimum value of 160. These results clearly suggest that, as Tsec and D1r are increased to their optimum values, the λcmax of the two‐stage drawn gel films can be improved further so as to be higher than those of the corresponding one‐stage drawn gel films. These interesting phenomena were investigated in terms of reduced viscosities of the solutions and by an analysis of the thermal, birefringence, and tensile properties of the drawn gel films. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1890–1901, 2001  相似文献   

15.
The structure, processing, morphology, and property relationships of biaxially drawn isotactic polypropylene (BOPP) film of mixed metallocene isotactic PP (m‐iPP) and Ziegler–Natta iPP (ZN‐iPP) homopolymer compositions are developed. The DSC and film drawing behavior show cocrystallization of the ZN‐iPP and m‐iPP components. The structure, processing, morphology, and property relations of ZN‐iPP/m‐iPP blends are compared with ZN‐iPP of varying isotacticities. The ZN‐iPP/m‐iPP blends exhibit reduced biaxial yield stress [σy(T)]. A fractional crystallinity model collapses the σy(T) data into a common normalized form over a range of draw temperatures, ZN‐iPP tacticities, and blend compositions. The simplified model is extended to define the interrelationships of yield activation and strain hardening behavior into regimes differentiated by characteristic draw stress (crystallinity) levels. Structure–property models are developed to explain the effect of draw temperature and resin–blend microstructure on the draw behavior, film stiffness, barrier, elongation, and synergies of the BOPP film processing–property balance. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2400–2415, 2001  相似文献   

16.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of the crystallization conditions on morphology and thermal behavior of samples of binary blends constituted of isotactic polypropylene (iPP) and a novel graft copolymer of unsaturated propylene with styrene (uPP‐g‐PS) isothermally crystallized from melt, at relatively low undercooling, in a range of crystallization temperatures of the iPP phase. It was shown that, irrespective of composition, no fall in the crystallinity index of the iPP phase was observed. Notwithstanding, spherulitic texture and thermal behavior of the iPP phase in the iPP/uPP‐g‐PS materials were strongly modified by the presence of copolymer. Surprisingly, iPP spherulites crystallized from the blends showed size and regularity higher than that exhibited by plain iPP spherulites. Moreover, the amount of amorphous material located in the interspherulitic amorphous regions decreased with increasing crystallization temperature, and for a given crystallization temperature, with increasing uPP‐g‐PS content. Also, relevant thermodynamic parameters, related to the crystallization process of the iPP phase from iPP/uPP‐g‐PS melts, were found, composition dependent. The equilibrium melting temperature and the surface free energy of folding of the iPP lamellar crystals grown in the presence of uPP‐g‐PS content up to 5% (wt/wt) were, in fact, respectively slightly lower and higher than that found for the lamellar crystals of plain iPP. By further increase of the copolymer content, both the equilibrium melting temperature and surface free energy of folding values were, on the contrary, depressed dramatically. The obtained results were accounted for by assuming that the iPP crystallization process from iPP/uPP‐g‐PS melts could occur through molecular fractionation inducing a combination of morphological and thermodynamic effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2286–2298, 2001  相似文献   

17.
Composites based on isotactic polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane‐silsesquioxane resin containing reactive phenyl groups (SiOPh) were prepared by melt extrusion. These iPP‐based formulations were investigated to evaluate the influence of such additives on the crystallization behavior and morphology, as well as on thermal and mechanical properties. The addition of sorbitol fastens crystallization kinetics of iPP and leads to higher transparency of iPP films. Upon the incorporation of siloxane‐silsesquioxane resin, no further effect on iPP crystallization kinetics is evidenced by calorimetry, optical microscopy, and X‐ray diffraction analysis. Transparency of iPP‐based composites is improved upon the addition of sorbitol, but decreased when SiOPh is added to the formulation. The composites are also stiffer, compared to neat polypropylene with a decreased elongation at break and increased Young's modulus values, with increasing amounts of fillers. The effect of the siloxane‐silsesquioxane resin on properties of iPP/NX8000/SiOPh composites was explained taking into account compatibility of the components and morphology of the composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43476.  相似文献   

18.
In this work, a highly orientated polopropelene/high-density polyethylene/polopropelene (PP/HDPE/PP) trilayer cast film was obtained from viscous encapsulation of HDPE and PP which involved of controlling the molecular factors and processing conditions. Consequently, a stable stratified flow was obtained as a result of phase-segregation through a single screw extruder under a high draw ratio (DR). Microporous HDPE, PP monolayer films as well as PP/HDPE/PP trilayer film have been successfully fabricated after a proper cold and hot stretching. The influence of DR and annealing process on crystalline structure and orientation of monolayer and trilayer membrane was investigated by differential scanning calorimetry, two-dimensional wide-angle X-ray diffraction and Fourier transform infrared. Both crystallinity and crystalline orientation increased with DR and annealing process. Additionally, the crystallinity in PP/HDPE/PP was lower than it in monolayer films but the orientation of PP/HDPE/PP was higher compared to monolayer films. The lamellae structure of HDPE, PP, and PP/HDPE/PP cast films prepared at different DR values and the influence of annealing process was also studied. The lamellae parameters, the long period (Lp ), the thickness of crystalline region (Lc ) and the thickness of amorphous region (La ) were obtained via 2D-small angle X-ray scattering. The long period (Lp ) of PP was 35% smaller than HDPE implying tight stacking in PP. The scanning electron microscopy micrographs of the membrane surface morphology and cross-section obtained from the cold and hot stretching of 30% and 150%, respectively. The results showed that the pore size of HDPE was greater than PP. Besides, the pore number and regularity of PP/HDPE/PP at DR = 90, which had a porosity of 0.48, was the best among all samples. The cross-section of PP/HDPE/PP trilayer membrane was found to be a multilayer structure. However, the majority of HDPE phase was in the middle of film while PP phase was absolutely at the edge of the film. The current work may open an entirely novel and simple way to fabricate PP/HDPE/PP trilayer microporous films. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47249.  相似文献   

19.
Wollastonite‐filled α‐isotactic polypropylene (iPP) and β‐iPP were prepared through introduction of wollastonite (W) and wollastonite with β‐nucleating surface (Wx) in iPP matrix. The α‐ and β‐nucleating ability of wollastonite, crystalline morphology, and mechanical properties of injected iPP filled by wollastonite with different nucleating surface were compared using differential scanning calorimetry, wide‐angle X‐ray diffraction, polarizing optical microscopy, mechanical testing, and scanning electron microscopy. The results indicated that iPP filled by wollastonite with different nucleating surface has different crystalline morphology, melting behavior, and mechanical properties. The W and Wx filled iPP mainly formed α‐ and β‐phase iPP, respectively. The tensile and flexural modulus of iPP/W and iPP/Wx increased with increasing wollastonite content, and the tensile and flexural modulus of iPP/Wx were lower than that of iPP/W. The tensile property, flexural property, and impact strength of iPP/Wx were higher than that of iPP/W and β‐iPP. The synergistic effect of reinforcing of wollastonite and toughening of β‐phase leads to higher mechanical properties. POLYM. COMPOS., 35:1445–1452, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
The epitaxial crystallization behavior of olefin block copolymers (OBCs) on uniaxially oriented isotactic polypropylene (iPP) and high-density polyethylene (HDPE) films has been investigated by transmission electron microscopy (TEM). The crystallizable blocks of the OBCs under investigation were epitaxially nucleated by both iPP and HDPE substrates and epitaxial growth of OBC lamellae was observed. Epitaxial crystallization of the OBCs has been found for slow and fast cooling conditions from the melt which pointed to the strong interaction between the polyolefin substrates and the OBCs. However, the epitaxial morphology of the OBCs strongly depends on their octene concentration difference (ΔC8) between crystallizable and non-crystallizable blocks, which probably is related to the OBC segregation strength in the melt. With high ΔC8 the development of epitaxial crystallization of the OBC was restricted within isolated crystalline domains surrounded by the amorphous phase. In contrast, with low ΔC8 the oriented lamellae of the OBC were distributed homogeneously on iPP but formed separated crystalline domains on HDPE, which has a stronger nucleation capability than iPP on the crystalline OBC blocks because of its similar molecular architecture. Our study points to epitaxy as another reason for the strong interaction between OBC and polyolefins which causes the advanced compatibilization behavior of OBCs when compared with conventional random copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号