首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fundamental rheological properties of a wide molar mass Mw range of poly(butylene succinate)s (PBSs) are investigated. For entangled samples and a reference temperature of 140°C, the shear viscosity is described by the Carreau–Yasuda model. The plateau modulus is estimated at 1.5 × 105 Pa, the average activation energy of PBS melt is , and the critical molar mass for entanglement Mc is found to be 16,000 g mol?1 (PS equivalent). The dilute solution properties of PBS are also studied. A size exclusion chromatography equipped with a triple detection system is used to estimate the Mark–Houwink–Sakurada (MHS) parameters of PBS in solution in chloroform at 30°C. The exponent a and the coefficient K of the MHS relationship are found to be 0.71 ± 0.1 and 39.94 × 10?5 ± 6.31 × 10?5 dL g?1(g mol?1)?a, respectively. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40887.  相似文献   

2.
Poly(butylene terephthalate)‐co‐poly(butylene succinate)‐block‐poly(ethylene glycol) segmented random copolymers, with poly(butylene succinate) (PBS) molar fraction (MPBS) varying from 10 to 60 %, were synthesized through a melt polycondensation process and characterized by means of GPC, NMR, DSC and mechanical testing. The number‐average relative molecular mass of the copolymers was higher than 4 × 104 g mol?1 with polydispersity below 1.9. Sequence distribution analysis on the two types of hard segments by means of 1H NMR revealed that the number‐average sequence length of PBT decreased from 2.80 to 1.23, while that of PBS increased from 1.27 to 4.76 with increasing MPBS. The random distribution of hard segments was also justified because of the degree of randomness around 1.0. Micro‐phase separation structure was verified for the appearance of two glass transition temperatures and two melting points, respectively, in DSC thermograms of most samples. The crystallinity of hard segments changed with the crystallizability controlled by the average sequence length and reached the minimum value at an MPBS of about 50–60 mol%. The results can also be ascribed to the co‐crystallization between two structurally analogous hard segments. Mechanical testing results demonstrated that incorporating a certain amount of PBS moieties (less than 30 mol%), at the expense of a minute depression of the elastic modulus, that higher relative elongation and more flexibility of polymer chain could be expected. Maximum equilibrium water absorption and faster degradation rates were observed on samples with higher MPBS values and lower crystallinity of hard segments were better hydrophilicity of the polymer chain, through in vitro degradation experiments. Copyright © 2003 Society of Chemical Industry  相似文献   

3.
Fundamental correlations between the molar mass and the solution viscosity (dimethylformamide (DMF)/1% di-n-butylamine (DBA)) are acquired and discussed on selected polyesterurethanes (PUR-Es) and polyetherurethanes (PUR-Et) with NCO/OH ratios ranging from 955 to 1 030. Static light scattering measurements reveal mass average molar masses in the range 20 000–95 000 g mol–1; membrane osmometry reveals number average molar masses in the range 15 000–50 000 g mol–1. Comparative tests with the analytical ultracentrifuge reveal the agreement with respect to the molar mass and the A2-values; additionally this measurements confirm unimodal Schulz-Zimm molar mass distributions with an average sedimentation constant of S = 1.1 sved (1 sved = 10–13 s). The results of light scattering und ultracentrifuge measurements show that the solvent mixture DMF/1 wt.-% DBA is well suitable for molar mass measurements and solution viscosity measurements. The linear light scattering Zimm diagram and the sedimentation run exclude microgels and higher molecular associates (for example allophanate and biuret crosslinkage). Because of the good correlation between the determined molar masses and the intrinsic viscosities [η] and the viscosities of the concentrated solutions it was possible to establish a calibration function [η] = K Ma. The exponent a = 0.6–0.9 of the Mark-Houwink-relation indicates that the polymer chains, in diluted solution, are isolated coiled molecules. In concentrated solutions the chains are partly crosslinked, depending on the molar mass. The correlation between the molar mass and the viscosity (Fox-relation) shows an unsteadiness at Mw = 55 000 g mol–1 (critical molar mass). Above the critical molar mass the solution viscosity increases with the molar mass with an exponent of ϵ = 3.4. Below the critical molar mass of Mw = 55 000 g mol–1 the solution viscosity increases straight proportional with the molar mass (ϵ = 1).  相似文献   

4.
The present contribution describes an innovation in the copolymerization of cyclic monomers, ε‐caprolactam (ε‐CL) and 2,2‐dimethyltrimethylene carbonate (DTC), with ethyl diazoacetate (EDA). The characterizations of the obtained copolymers, poly(EA‐ran‐EDA‐ran‐ε‐CL) and poly(EA‐ran‐EDA‐ran‐DTC) (where EA refers to the ethyl acetate group from EDA after nitrogen release), were performed using 1H NMR and 13C NMR spectroscopies and size exclusion chromatography. Under optimized conditions, the copolymer of ε‐CL with EDA possessing a number‐average molar mass (Mn) of 1300 g mol?1 and dispersity of 2.12 as well as that of DTC with EDA with Mn of 8000 g mol?1 and dispersity of 1.47 were obtained. The incorporation of the azo group in the obtained copolymers was determined from the results of elemental analysis (3.30–10.22% nitrogen) and Fourier transform infrared spectroscopy. Furthermore, the thermal properties of the obtained copolymers were examined using differential scanning calorimetry. X‐ray diffraction results showed that the synthesized copolymers were amorphous. © 2014 Society of Chemical Industry  相似文献   

5.
Nonisothermal crystallization behaviors of both poly(butylene succinate) (PBS) and poly(ethylene glycol) (PEG) segments within PBS‐PEG (PBSEG) multiblock copolymers were investigated by differential scanning calorimetry (DSC). The nonisothermal crystallization kinetics of both PBS and PEG segments were analyzed by Avrami, Ozawa, and Mo methods. The results showed that both of Avrami and Mo methods were successful to describe the nonisothermal crystallization kinetics of PBS and PEG segments. The results of crystallization kinetics indicated that the crystallization rate of PBS segment decreased with PBS segment content and/or LPBS, while that of PEG segment decreased with Mn,PEG or FPEG. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40940.  相似文献   

6.
The dehydration–polymerization kinetics of DL ‐ and L ‐aspartic acid, either in the absence or presence of KHSO4, from 323 to 573 K, was studied by thermogravimetric analysis (TGA), and the synthesis of polyaspartate through the polymerization of L ‐aspartic acid was investigated by a thin‐layer polymerization method. The TGA results revealed that the dehydration–polymerization of both type of aspartic acids proceeds in two steps: first, the loss of one water molecule through the reaction of an amino group of one aspartic acid molecule and a hydroxyl group of another aspartic acid molecule, forming amide bonds, and secondly, the loss of another water molecule through the amide hydrogen and another hydroxyl group, leading to the formation of a succinimide ring. The kinetic parameters of the extrapolated onset temperatures of dehydration—the first and the second maxima—were obtained by a method similar to that of Ozawa–Flynn–Wall. The kinetic results indicate that the dehydration of L ‐aspartic acid is slightly more difficult than for DL ‐aspartic acid, and that the presence of potassium bisulfate effectively catalyzes the dehydration–polymerization of aspartic acid. In the synthesis of polyaspartate, the product with a weight‐average molecular mass (Mw) of 5000 g mol?1 was obtained in the absence of catalyst. However, in the presence of potassium bisulfate, the products obtained had Mws of up to 7000 g mol?1 Copyright © 2003 Society of Chemical Industry  相似文献   

7.
The bioplastic poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), was isolated from a bioreactor using mixed microbial consortia fed volatile fatty acids (VFA), from fermented dairy manure, as the carbon source. The molar fraction of 3‐hydroxyvalerate (3HV) amounted to 0.33 mol mol?1 for two isolated PHBV samples as determined by GC‐MS and 1H‐NMR spectroscopy. The chemical, thermal, and mechanical properties were determined. The PHBVs had relatively high Mw (~790,000 g mol?1). Only a single glass transition temperature (Tg) and melting point (Tm) were observed. Isolated PHBVs exhibited good flexibility and elongation to break as compared with commercial PHBVs with lower HV. The diad and triad sequence distributions of the monomeric units were determined by 13C‐NMR spectroscopy and followed Bernoullian statistics suggesting that the PHBVs were random. The PHBV sequence distribution was also characterized by electrospray ionization‐mass spectrometry (ESI‐MSn) after partial alkaline hydrolysis to oligomers showing a random 3HV distribution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40333.  相似文献   

8.
RAFT polymerization of N‐vinyl pyrrolidone (NVP) has been investigated in the presence of chain transfer agent (CTA), i.e., prop‐2‐ynyl morpholine‐4‐carbodithioate (PMDC). The influence of reaction parameters such as monomer concentration [NVP], molar ratio of [CTA]/[AIBN, i.e., 2,2′‐azobis (2‐methylpropionitrile)] and [NVP]/[CTA], and temperature have been studied with regard to time and conversion limit. This study evidences the parameters leading to an excellent control of molecular weight and molar mass dispersity. NVP has been polymerized by maintaining molar ratio [NVP]: [PMDC]: [AIBN] = 100 : 1 : 0.2. Kinetics of the reaction was strongly influenced by both temperature and [CTA]/[AIBN] ratio and to a lesser extent by monomer concentration. The activation energy (Ea = 31.02 kJ mol?1) and enthalpy of activation (ΔH?= 28.29 kJ mol?1) was in a good agreement to each other. The negative entropy of activation (ΔS? = ?210.16 J mol‐1K‐1) shows that the movement of reactants are highly restricted at transition state during polymerization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The tripodal ‘click’ compound tris(4‐trimethylsilylmethyl‐1,2,3‐triazolylmethyl)amine (TTTA) was prepared and investigated as a ligand for copper‐catalysed single‐electron transfer living radical polymerization of methyl methacrylate (MMA). Bulk polymerizations catalysed by Cu0/CuBr2/TTTA with a molar ratio of [MMA]0/[ethyl‐2‐bromoisobutyrate]0/[CuBr2]0/[TTTA]0 = 200:2:1:1 and a 1.0 × 1.0 cm2 Cu0 sheet were fast and well controlled (76% conversion with Mw/Mn = 1.19 after 3.5 h). Greater amounts of added air generally gave slower polymerizations although Mw/Mn remained low (<1.3) even when the polymerization was carried out under aerobic conditions. Decreasing initial concentrations of the Cu0/CuBr2/TTTA catalyst system or polymerization temperatures also resulted in slower polymerizations and yielded polymers with broader dispersity. Kinetic studies in the temperature range 40–90 °C revealed an apparent activation energy of 22.6 kJ mol?1. © 2014 Society of Chemical Industry  相似文献   

10.
The sample preparation pathway of solid polymer electrolytes (SPEs ) influences their thermal properties, which in turn governs the ionic conductivity of the materials especially for systems consisting of a crystallizable constituent. Majority of poly(ethylene oxide) (PEO)‐based SPEs with molar masses of PEO well above 104 g mol?1 (where PEO is crystallizable and should reach an asymptote in thermal behaviour) display molar mass dependence of the thermal properties and ionic conductivities in non‐equilibrium conditions, as reported in the literature. In this study, PEO of different viscosity‐molar masses (M η = 3 × 105, 6 × 105, 1 × 106, 4 × 106 g mol?1) and LiClO4 salt (0 to 16.7 wt%) were used. The SPEs were thermally treated under inert atmosphere above the melting temperature of PEO and then cooled down for subsequent isothermal crystallization for sufficient experimental time to develop morphology close to equilibrium conditions. The thermal properties (e.g. glass transition temperature, melting temperature, crystallinity) according to differential scanning calorimetry and the ionic conductivity obtained from impedance spectroscopy at room temperature (σ DC ~ 10?6 S cm?1) demonstrate insignificant variation with respect to the molar mass of PEO at constant salt concentration. These findings are in agreement with the PEO crystalline structures using X‐ray diffraction and ion ? dipole interaction by Fourier transform infrared results. © 2017 Society of Chemical Industry  相似文献   

11.
Stereo diblock polylactides (SDB‐PLAs) composed of relatively short poly(d ‐lactide) (PDLA) segments and relatively long poly(l ‐lactide) (PLLA) segments were synthesized to have a wide number‐average molecular weight (Mn) range of 2.5 × 104–2.0 × 105 g mol?1 and d ‐lactyl unit content of 0.9–38.6%. The effects of incorporated short PDLA segments (Mn = 2.0 × 103–7.7 × 103 g mol?1) on crystallization behavior of the SDB‐PLAs were first investigated during heating after complete melting and quenching or during slow cooling after complete melting. Stereocomplex (SC) crystallites can be formed at d ‐lactyl unit content as low as 4.3 and 5.8% for heating and slow cooling, respectively, and for Mn of PDLA segments as low as 2.0 × 103 and 3.5 × 103 g mol?1, respectively. With decreasing Mn and increasing d ‐lactyl unit content, the cold crystallization temperature during heating decreased and the crystallization temperature during slow cooling increased. With increasing d ‐lactyl unit content, the melting enthalpy (ΔHm) of SC crystallites during heating and the crystallinity (Xc) of SC crystallites after slow cooling increased, whereas ΔHm of PLLA homo‐crystallites during heating and Xc of PLLA homo‐crystallites after slow cooling decreased. The total ΔHm of SC crystallites and PLLA homo‐crystallites during heating and the total Xc after slow cooling became a minimum at d ‐lactyl unit content of 10–15% and gave a maximum at d ‐lactyl unit content of 0%. Despite the accelerated crystallization of some of SDB‐PLAs, the low values of total ΔHm and Xc at d ‐lactyl unit content of 10–15% are attributable to the formation of two crystalline species of SC crystallites and PLLA homo‐crystallites.  相似文献   

12.
Elastomers based on polydimethylsiloxane (PDMS) are used as insulating material in outdoor electrical power applications. It is believed that migration of small molecule PDMS species plays an important role in the recovery of hydrophobicity of oxidized or polluted PDMS elastomer surfaces. This paper reports data on diffusivity and solubility of low molar mass PDMS liquids in PDMS rubbers (8000 < M c < 16,000 g/mol) obtained by sorption measurements. It was found that the diffusivity (D) of linear PDMS liquids was approximately independent of the concentration of penetrant and that in the molar mass range 400 < M c < 18,000 g/mol it decreased with molar mass (M c) of the diffusing liquid according to D α M c−0.8. Theory and previous data for other oligomers and elastomers predict that D is proportional to M−1. Linear PDMS liquids of lower molar mass exhibited a stronger molar mass dependence. The diffusivity of a given PDMS liquid increased with increasing elastomer crosslink density. The activation energy of the diffusivity was constant at 15.5 ± 2 kJ/mol for linear PDMS liquids of M c larger than 1000 g/mol−1 with only a negligible influence of network density and filler content. The activation energy of the lowest molar mass penetrant was considerably lower, 6 to 7 kJ/mol. The solubility increased markedly with decreasing molar mass of the penetrant and with decreasing elastomer crosslink density.  相似文献   

13.
The attachment of anticancer agents to polymers is a promising approach towards reducing the toxic side‐effects and retaining the potent antitumour activity of these agents. A new tetrahydrophthalimido monomer containing 5‐fluorouracil (ETPFU) and its homopolymer and copolymers with acrylic acid (AA) and with vinyl acetate (VAc) have been synthesized and spectroscopically characterized. The ETPFU contents in poly(ETPFU‐co‐AA) and poly(ETPFU‐co‐VAc) obtained by elemental analysis were 21 mol% and 20 mol%, respectively. The average molecular weights of the polymers determined by gel permeation chromatography were as follows: Mn = 8900 g mol?1, Mw = 13 300 g mol?1, Mw/Mn = 1.5 for poly(ETPFU); Mn = 13 500 g mol?1, Mw = 16 600 g mol?1, Mw/Mn = 1.2 for poly(ETPFU‐co‐AA); Mn = 8300 g mol?1, Mw = 11 600 g mol?1, Mw/Mn = 1.4 poly(ETPFU‐co‐VAc). The in vitro cytotoxicity of the compounds against FM3A and U937 cancer cell lines increased in the following order: ETPFU > 5‐FU > poly(ETPFU) > poly(ETPFU‐co‐AA) > poly(ETPFU‐co‐VAc). The in vivo antitumour activities of all the polymers in Balb/C mice bearing the sarcoma 180 tumour cell line were greater than those of 5‐FU and monomer at the highest dose (800 mg kg?1). © 2002 Society of Chemical Industry  相似文献   

14.
The refractive indices of poly(β-hydroxybutyric acid) (PHB) at four wavelengths have been determined via different procedures. Viscometric and light scattering measurements have been made on solutions of eight samples of PHB (Mw = 20·9 × 103?929 × 103 g mol?1) in 2,2,2-trifluoroethanol. From the dependences of intrinsic viscosity and of radius of gyration on molar mass, the conformation of PHB in dilute solution is shown to be that of a random coil. The findings are discussed in relation to existing conflicting evidence on the conformation of this polymer.  相似文献   

15.
A Fourier-transform infrared (FT-IR) spectroscopic method has been developed for assaying the bile salt-stimulated human milk lipase (BSSL, EC3.1) catalyzed hydrolysis of triolein in AOT reversed micelles in iso-octane. At 37°C in 50 mmol dm?3 AOT the molar absorbtivities for the carbonyl stretching frequencies for triolein (at 1751 cm?1) and oleic acid (at 1714 cm?1) were 1646 dm3 mol?1 cm?1 and 743 dm?3 mol?1 cm?1, respectively. The rate was linearly dependent upon the concentration of enzyme in the water pool up to 10 mg cm?3 and maximum activity was observed at a ratio (w0) of [H2O]:[AOT] = 16·7. Using these conditions, and in the presence of 10 mmol dm?3 sodium taurocholate (TC), the derived Michaelis–Menten parameters Vmax and Km were 57·5 μmol min?1 mg?1 and 5·53 mmol dm?3, respectively. These results are compared with those obtained in an oil-in-water microemulsion system and are discussed in terms of the relative partitioning of the enzyme and the substrate in the aqueous and oil phases and the interfacial concentration of the substrate in the two systems.  相似文献   

16.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidocaproic acid (ETCA), was prepared by reaction of maleimidocaproic acid and furan. The homopolymer of ETCA and its copolymers with acrylic acid (AA) or with vinyl acetate (VAc) were obtained by photopolymerizations using 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C. The synthesized ETCA and its polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The apparent average molecular weights and polydispersity indices determined by gel permeation chromatography (GPC) were as follows: Mn = 9600 g mol?1, Mw = 9800 g mol?1, Mw/Mn = 1.1 for poly(ETCA); Mn = 14 300 g mol?1, Mw = 16 200 g mol?1, Mw/Mn = 1.2 for poly(ETCA‐co‐AA); Mn = 17 900 g mol?1, Mw = 18 300 g mol?1, Mw/Mn = 1.1 for poly(ETCA‐co‐VAc). The in vitro cytotoxicity of the synthesized compounds against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines decreased in the following order: 5‐fluorouracil (5‐FU) ≥ ETCA > polymers. The in vivo antitumour activity of the polymers against Balb/C mice bearing sarcoma 180 tumour cells was greater than that of 5‐FU at all doses tested. © 2001 Society of Chemical Industry  相似文献   

17.
This study focused on the characterization of polyhydroxybutyrate (PHB) produced from crude glycerol (CG) using mixed microbial consortia (MMC). PHB recovered from two biomass drying treatments (65°C oven drying and lyophilization) was characterized comparatively along with a commercially sourced PHB (PHB‐C). Characterization results showed that oven‐drying method caused PHB partial hydrolysis, as indicated by its lower molecular weight (Mw) (PHB‐O, 144,000 g mol?1), which further affected its physical and chemical properties. Lyophilization helped alleviate PHB hydrolysis during drying process, leading to PHB (PHB‐L) of higher Mw (309,000 g mol?1) and material properties comparable with commercial PHB. Furthermore, crystallization and morphological studies showed that PHB‐L featured faster crystallization rates and smaller spherulites as compared with PHB‐C, probably due to its lower Mw. In general, the results from this study suggested that CG‐MMC‐derived PHB‐L possessed material properties comparable with those of pure substrate/culture produced PHB. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Optically active poly(L ‐phenyllactic acid) (Ph‐PLLA), poly(L ‐lactic acid) (PLLA), and poly(L ‐phenyllactic acid‐co‐L ‐lactic acid) with weight‐average molecular weight exceeding 6 × 103 g mol?1 were successfully synthesized by acid catalyzed direct polycondensation of L ‐phenyllactic acid and/or L ‐lactic acid in the presence of 2.5–10 wt % of p‐toluenesulfonic acid. Their physical properties and crystallization behavior were investigated by differential scanning calorimetry, thermogravimetry, and polarimetry. The absolute value of specific optical rotation ([α]) for Ph‐PLLA (?38 deg dm?1 g?1 cm3) was much lower than that of [α] for PLLA (?150 deg dm?1 g?1 cm3), suggesting that the helical nature was reduced by incorporation of bulky phenyl group. PLLA was crystallizable during solvent evaporation, heating from room temperature, and cooling from the melt. Incorporation of a very low content of bulky phenyllactyl units even at 4 mol % suppressed the crystallization of L ‐lactyl unit sequences during heating and cooling, though the copolymers were crystallizable for L ‐phenylactyl units up to 6 mol % during solvent evaporation. The activation energy of thermal degradation (ΔEtd) for Ph‐PLLA (200 kJ mol?1) was higher than that for PLLA (158 kJ mol?1). The ΔEtd for the copolymers increased with an increase in L ‐phenyllactyl unit content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
The detail information of both α and β form poly(vinylidene fluoride) (PVDF) crystal effect on the crystallization behavior of poly(butylene succinate) (PBS) were systematically studied. The results show that β form PVDF can obviously improve the melt‐crystallization temperature of PBS during the nonisothermal crystallization process. Both crystallization time span and spherulitic size of PBS decrease with the increasing amount of β form PVDF, which enhances the primary nucleation of PBS. But α form PVDF shows no nucleating effect on PBS crystallization, exhibiting as almost unchanged Tc values for α form PVDF‐blended PBS samples. The intrinsic mechanism for the nucleating effect of β form PVDF on PBS was proposed to be the epitaxial crystallization. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40991.  相似文献   

20.
Understanding the relationship between the number‐average molecular weight (Mn) and the shape memory behavior of polymers is crucial for a complete picture of their thermomechanical properties, and hence for the development of smart materials, and, in particular, in textile technology. We report here on the study of shape memory properties as a function of Mn of polymers. Shape memory polyurethanes (SMPUs) of different Mn were synthesized, with various catalyst contents or molar ratio(r = NCO/OH) in the composition. In particular, two types of SMPU, namely Tm and Tg types according to their switch temperature type, were synthesized to compare the influence of Mn on their shape memory behavior. X‐ray diffraction, differential scanning calorimetry, dynamic mechanical analysis, and shape memory behavior results for the SMPUs are presented. The results indicate that the melting temperature (Tm), the glass transition temperature (Tg), the crystallinity, and the crystallizability of the soft segment in SMPUs are influenced significantly by Mn, before reaching a critical limit around 200 000 g mol?1. Characterization of the shape memory effect in PU films suggests that the Tm‐type films generally show higher shape fixities than the Tg‐type films. In addition, this shape fixity decreases with increasing Mn in the Tg‐type SMPU, but the shape recovery increases with Mn in both types of SMPU. The shape recovery temperature, in contrast, decreases with Mn as suggested by the result of their thermal strain recovery. It is concluded that a higher molecular weight (Mn > 200 000 g mol?1) is a prerequisite for SMPUs to exhibit higher shape recovery at a particular temperature. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号