首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Poly(ethylene‐octene) (POE), maleic anhydride grafted poly(ethylene‐octene) (mPOE), and a mixture of POE and mPOE were added to poly(butylene terephthalate) (PBT) to prepare PBT/POE, PBT/mPOE, and PBT/mPOE/POE blends by a twin‐screw extruder. Observation by scanning electron microscopy revealed improved compatibility between PBT and POE in the presence of maleic anhydride groups. The melting behavior and isothermal crystallization kinetics of the blends were studied by wide‐angle X‐ray diffraction and differential scanning calorimeter; the kinetics data was delineated by kinetic models. The addition of POE or mPOE did not affect the melting behavior of PBT in samples quenched in water after blending in an extrude. Subsequent DSC scans of isothermally crystallized PBT and PBT blends exhibited two melting endotherms (TmI and TmII). TmI was the fusion of the crystals grown by normal primary crystallization and TmII was the melting peak of the most perfect crystals after reorganization. The dispersed second phase hindered the crystallization; on the other hand, the well dispersed phases with smaller size enhanced crystallization because of higher nucleation density. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
The ternary blends of acrylate rubber (ACM), poly(butylene terephthalate) (PBT), and liquid crystalline polymer (LCP) were prepared by varying the amount of LCP but fixing the ratio of ACM and PBT, using melt mixing procedure. The influence of interactions on thermal and dynamic mechanical properties of the blends was investigated over the complete composition range. The techniques applied were Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetry (TG), and dynamic mechanical analysis (DMA). The FTIR spectroscopy analysis showed reduction in the intensity of the peak corresponding to epoxy groups of ACM with increasing heating time at 290°C. This implies that there is a chemical reaction between the epoxy and end groups of PBT and LCP. Glass transition temperature (Tg) and melting temperature (Tm) of the blends were affected depending on the LCP weight percent in the ACM/PBT blend, respectively. This further suggests the strong interfacial interactions between the blend components. In presence of ACM, the nucleating effect of LCP was more pronounced for the PBT phase. The thermogravimetric study showed improved thermal stability for the blends with the increasing LCP content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3904–3912, 2006  相似文献   

4.
New toughened poly(butylene terephthalate) (PBT)/bisphenol A polycarbonate (PC) blends were obtained by melt blending with ethylene–butylacrylate–glycidyl methacrylate copolymer (PTW) and ethylene‐1‐octylene copolymer (POE) in a twin‐screw extruder. The mechanical properties of PBT/PC blends were investigated. The presence of PTW or POE could improve the mechanical properties except for the tensile strength and flexural properties of the PBT/PC blends. However, a combination use of PTW and POE had a strong synergistic effect, leading to remarkable increases in the impact strength, elongation at break, and Vicat temperature and some reduction of the tensile strength and flexural properties. The relationship between mechanical properties and morphology of the PBT/PC/PTW/POE blends was studied. The morphology was observed by scanning electron microscopy and the average diameter of dispersed phase was determined by image analysis, and the critical interparticle distance for PBT/PC was determined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 54–62, 2006  相似文献   

5.
Ternary polymer blends were obtained by melt mixing, mixing up to 30% poly(butylene terephthalate) (PBT) with polycarbonate (PC) and phenoxy in an attempt to improve the miscibility of the PC/phenoxy binary blend. Although most of the blends with a PBT content higher than 10% appear as transparent, two Tg's appeared at all the blend compositions. These Tg's correspond to PC-rich and phenoxy-rich phases where a low amount of the main component of the other phase and all PBT are dissolved in amounts that are a function of the PC/phenoxy ratio of the blend. Increasing the PBT contents in the blends closes to linearity the torque versus composition plot, so that a relationship between miscibility level and viscosity exists in these blends.  相似文献   

6.
By varying the cyanate/epoxy ratio, three polyetherimide(PEI)‐modified bisphenol A dicyanate–novolac epoxy resin blends with different epoxy contents were prepared. The effects of epoxy content on the dynamic mechanical behaviour of those blends were investigated by dynamic mechanical thermal analysis. The results showed that the glass transition temperature of the cyanate–epoxy network (Tg1) in the modified blend decreases with epoxy content. When the epoxy content increases, both the width of the glass transition of the cyanate–epoxy network and its peak density are depressed substantially. Although the tangent delta peak value of PEI is basically independent of epoxy content, the Tg of PEI (Tg2) decreases with epoxy content. Tg1 is independent of the PEI loading. When Tg1 is lower than Tg2, however, the Tg1 in the blend with revised phase structure is substantially lower than other blends. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
Poly(ethylene octene) (POE), maleic anhydride grafted poly(ethylene octene) (mPOE), and a mixture of POE and mPOE were added to poly(butylene terephthalate) (PBT) to prepare PBT/POE (20 wt % POE), PBT/mPOE (20 wt % mPOE), and PBT/mPOE/POE (10 wt % mPOE and 10 wt % POE) blends with an extruder. The melting behavior of neat PBT and its blends nonisothermally crystallized from the melt was investigated with differential scanning calorimetry (DSC). Subsequent DSC scans exhibited two melting endotherms (TmI and TmII). TmI was attributed to the melting of the crystals grown by normal primary crystallization, and TmII was due to the melting of the more perfect crystals after reorganization during the DSC heating scan. The better dispersed second phases and higher cooling rate made the crystals that grew in normal primary crystallization less perfect and relatively prone to be organized during the DSC scan. The effects of POE and mPOE on the nonisothermal crystallization process were delineated by kinetic models. The dispersed phase hindered the crystallization; however, the well‐ dispersed phases of an even smaller size enhanced crystallization because of the higher nucleation density. The nucleation parameter, estimated from the modified Lauritzen–Hoffman equation, showed the same results. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
The aim of this study was to improve the toughness of recycled poly(ethylene terephthalate) (PET)/glass fiber (GF) blends through the addition of ethylene–butyl acrylate–glycidyl methacrylate copolymer (EBAGMA) and maleic anhydride grafted polyethylene–octene (POE‐g‐MAH) individually. The morphology and mechanical properties of the ternary blend were also examined in this study. EBAGMA was more effective in toughening recycled PET/GF blends than POE‐g‐MAH; this resulted from its better compatibility with PET and stronger fiber/matrix bonding, as indicated by scanning electron microscopy images. The PET/GF/EBAGMA ternary blend had improved impact strength and well‐balanced mechanical properties at a loading of 8 wt % EBAGMA. The addition of POE‐g‐MAH weakened the fiber/matrix bonding due to more POE‐g‐MAH coated on the GF, which led to weakened impact strength, tensile strength, and flexural modulus. According to dynamic rheometer testing, the use of both EBAGMA and POE‐g‐MAH remarkably increased the melt storage modulus and dynamic viscosity. Differential scanning calorimetry analysis showed that the addition of EBAGMA lowered the crystallization rate of the PET/GF blend, whereas POE‐g‐MAH increased it. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
In the present study, the properties of metallocene polyethylene–octene elastomer (POE) and wood flour (WF) blends were examined by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), an Instron mechanical tester, and scanning electron microscopy (SEM). The results showed that the mechanical properties of POE were obviously lowered, due to the poor compatibility between the two phases, when it was blended with WFs. A fine dispersion and homogeneity of WF in the polymer matrix could be obtained when acrylic acid‐grafted POE (POE‐g‐AA) was used to replace POE for manufacture of the blends. This better dispersion is due to the formation of branched and crosslinked macromolecules since the POE‐g‐AA copolymer had carboxyl groups to react with the hydroxyls. This is reflected in the mechanical and thermal properties of the blends. In comparison with a pure POE/WF blend, the increase in tensile strength at break was remarkable for the POE‐g‐AA/WF blend. The POE‐g‐AA/WF blends are more easily processed than are the POE/WF blends, since the former had a lower melt viscosity than that of the latter. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1919–1924, 2003  相似文献   

10.
Polymer blend systems offer a versatile approach for tailoring the properties of polymer materials for specific applications. In this study, we investigated the compatibility of polybutylene terephthalate (PBT) and poly(ethylene glycol) (PEG) blends processed using a twin-screw extruder, with the aim of enhancing their compatibility. Phthalic anhydride (PAn) and phthalic acid (PAc) were used as potential compatibilizers at different concentrations to improve interfacial interactions between PBT and PEG. Blend morphologies were characterized using scanning electron microscopy, which revealed improved interfacial compatibility and reduced phase separation with the incorporation of small amounts of PAn and PAc. Differential scanning calorimetry analysis indicated changes in the melting temperature (Tm) and glass transition temperature (Tg) of the blends owing to the compatibilizing effects of PAn and PAc. Dynamic mechanical analysis further corroborated the influence of the compatibilizers on the Tg and viscoelastic behavior. Thermogravimetric analysis demonstrated enhanced thermal stability with the addition of either PAn or PAc. Rheological measurements indicated an increase in complex viscosity with increasing compatibilizer content, indicating improved compatibility. The degradation point (Td) of PBT/PEG blend increased from 158 to 200 and 319°C with the incorporation of 5 phr PAn and 2 phr PAc, respectively. Mechanical properties, including tensile strength, Young's modulus, and Izod impact strength, were evaluated. For instance, the tensile strength of PBT/PEG blend was enhanced from 43.5 to 48.7 and 49.7 MPa by incorporating 5 phr PAn and 2 phr PAc, respectively. However, the impact strength of PBT/PEG blend increased from 3.0 to 4.3 and 4.2 kJ/m2 with the addition of 1 phr PAn and 1 phr PAc, respectively. The findings demonstrated that adding 5 phr PAn or 2 phr PAc to the PBT/PEG blends was advantageous, achieving a harmony of performance benefits and compromises. Rheological observations contributed significantly to the mechanical and thermal properties. Overall, the study highlights the significance of utilizing PAn and PAc as effective compatibilizers for enhancing the properties of PBT/PEG blends, making them potential candidates for various applications.  相似文献   

11.
Summary A quaternary blend system composed of three low-Tg semi-crystalline aryl-polyesters namely, [poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate) (PTT), and poli(butylene terephthalate) (PBT)] and an amorphous high-Tg poly(ether imide) (PEI) was prepared and investigated using thermal and morphology characterization techniques. This study, for the first time, demonstrated miscibility and phase behavior of a quaternary blend comprising four different polymers. A single and composition-dependent Tg was found for each of all quaternary blend samples. In addition, various thermal transition characteristics, single and composition-dependent Tc,c, increasingly suppressed ΔHc,c at higher PEI contents, are also indication of phase miscibility of the quaternary blend. SEM morphology characterization (3000X) revealed no discernible domains and homogeneous phase morphology in the quaternary blends was also substantiated using optical and scanning electron microscopy results. Received: 14 November 2002/Revised version: 17 February 2003/ Accepted: 22 February 2003 Correspondence to Eamor M. Woo  相似文献   

12.
The effects of boiling water on the mechanical and thermal properties and morphologies of polycarbonate (PC), PC/acrylonitrile–butadiene–styrene resin (PC/ABS), and PC/low‐density polyester (PC/LDPE) blends (compositions of PC/ABS and PC/LDPE blends were 80/20) were studied. PC and the PC/ABS blend had a transition from ductile to brittle materials after boiling water aging. The PC/LDPE blend was more resistant to boiling water aging than PC and the PC/ABS blend. The thermal properties of glass‐transition temperature (Tg) and melting temperature (Tm) in PC and the blends were measured by DSC. The Tg of PC and PC in the PC/ABS and PC/LDPE blends decreased after aging. The Tg of the ABS component in the PC/ABS blend did not change after aging. The supersaturated water in PC clustered around impurities or air bubbles leading to the formation of microcracks, which was the primary reason for the ductile–brittle transition in PC, and the microcracks could not recover after PC was treated at 160°C for 6 h. The PC/ABS blend showed slightly higher resistance to boiling water than did PC. The highest resistance to boiling water of the PC/LDPE blend may be attributed to its special structural morphology. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 589–595, 2003  相似文献   

13.
A novel method is used for preparing liquid rubber‐toughened epoxy blend, in which an initiator was added to the liquid rubber–epoxy mixture to initiate crosslinking reaction of liquid rubber, and then curing agent was added to form the thermoset. Two epoxy blends with carboxyl‐terminated butadiene‐acrylonitrile copolymers were prepared using traditional and novel methods respectively. Results indicated that the novel rubber‐toughened epoxy blend exhibited much better mechanical properties than its traditional counterpart. The morphologies of the blends were explored by transmission electron microscopy (TEM), it was revealed that the use of the novel method formed a local interpenetrating network structure in the blend, which substantially improved the interfacial adhesion. The impact fracture surfaces of the two blends were observed by scanning electron microscopy (SEM) to explore the toughening mechanism, it was found that crack pinning was the major toughening mechanism for the novel rubber‐toughened epoxy blend. Dynamic mechanical analysis (DMA) was applied to determine the Tg values of the blends, which were found to be close. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41110.  相似文献   

14.
Blends of compatibilized polyoxymethylene (POM)/ethylene butylacrylate copolymer (EBA)/ethylene‐methyl acrylate‐glycidyl methacrylate copolymer (EMA‐GMA) and uncompatibilized POM/EBA were investigated. The notched impact strength of the compatibilized blends was higher than that of their uncompatibilized counterparts. The toughness of the POM blends was improved obviously with relatively low loading of EBA. Fourier transform infrared spectroscopy (FTIR) spectra of EMA‐GMA, pure POM, and POM/EBA/EMA‐GMA blends indicated that epoxy groups of EMA‐GMA reacted with terminal hydroxyl groups of POM molecular chains. The glass‐transition temperature (Tg) values of the POM matrix and the EBA phase were observed shifted to each other in the presence of EMA‐GMA compatibilizer indicating that the compatibilized blends had better compatibility than their uncompatibilized counterparts. With the addition of EBA to POM, both the compatibilized and uncompatibilized blends showed higher onset degradation temperature (Td) than that of pure POM and the Td values of the compatibilized blends were higher than those of their uncompatibilized counterparts. The scanning electron microscopy showed better EBA particles distribution state in the compatibilized system than in the uncompatibilized one. The compatibilized blend with an obvious rougher impact fracture surface indicated the ductile fracture mode. POLYM. ENG. SCI., 58:1127–1134, 2018. © 2017 Society of Plastics Engineers  相似文献   

15.
环氧官能化(乙烯/辛烯)共聚物增韧PBT的研究   总被引:2,自引:0,他引:2  
利用双螺杆挤出机将对苯二甲酸丁二酯(PBT)分别与(乙烯/辛烯)共聚物(POE)及环氧官能化的POE(gPOE)熔融共混,对共混物的流变性能、相形态、断裂形貌和力学性能进行了研究。结果表明,gPOE的环氧官能团与PBT的端羧基或端羟基发生化学反应生成PBT—CO—POE共聚物,降低了PBT与POE之间的界面张力,使POE在PBT基体中分散均匀;与PBT/POE共混物相比,PBT/gPOE共混物呈现明显的韧性断裂特征;gPOE的引入显著提高了PBT的缺口冲击强度,成功实现了对PBT的增韧。  相似文献   

16.
Side‐chain liquid crystalline ionomer (SLCI) containing sulfonic acid groups with a polymethylhydrosiloxane main‐chain was used in the blends of polypropylene (PP) and polybutylene terephthalate (PBT) as a compatibilizer. The crystalline behavior, morphological, and mechanical properties of the blends were investigated in detail by differential scanning calorimetry (DSC), polarizing optical microscope (POM), Fourier transforms infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Revealed by the shift of Tm in DSC thermogram and the shift of the absorbed peak in FTIR spectra, specific interaction led to stronger interfacial adhesion between these phases, which resulted in much finer dispersion of the minor PBT phase in PP matrix. The SLCI containing sulfonate acid groups acted as physical crosslinking agent along the interface, which compatibilized PP/PBT blends. The mechanical property of the blends including 4 wt % SLCI contents was better than that of other SLCI contents in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Polybutylene terephthalate (PBT), a versatile engineering thermoplastic, has been processed using epoxy resin as a reactive solvent. Following processing of this blend, the epoxy was cured using a bi-functional amine curing agent, resulting in phase separation and phase inversion thus producing a different morphology. Change in crystallization kinetics of PBT in the presence of the epoxy monomer and cured epoxy resin has been studied using differential scanning calorimetry. Half time of crystallization (t1/2) of PBT decreased in the presence of epoxy monomer while it remained constant in the presence of cured epoxy resin. The value of Avrami exponent varied between 1 and 2 in pure PBT as well as for uncured and cured blends, indicating mixed type of spherulitic growth. Morphology of the uncured and cured blends was studied using small angle light scattering (SALS) and polarizing microscopy for samples crystallized at different temperatures at all levels of the epoxy resin. Scattering pattern in Hv and Vv mode of SALS provided information about the type of spherulites as well as volume filling nature of the spherulites. In general, typical unusual type of spherulitic pattern for PBT, in which scattering lobes lie along the polar axis, changed to usual type of pattern for PBT/epoxy blends, in which scattering lobes lie at 45° to the polar axis.  相似文献   

18.
In this work, (acrylonitrile‐styrene‐acrylic)/(α‐methylstyrene‐acrylonitrile) copolymer (ASA/α‐MSAN) binary alloy was prepared with different composition ratios via melt blending. This work mainly focused on improving the heat resistance of ASA. According to the results of dynamic mechanical thermal analysis, the binary blends exhibited three glass transition temperatures (Tgs) and the shift of the Tgs indicated the partial miscibility of binary blends. This partial miscibility maintained the high Tg of α‐MSAN, which led to the outstanding heat resistance of binary blends. Furthermore, heat distortion temperature also showed that the heat resistance of binary blends was significantly enhanced with the addition of α‐MSAN. However, the introduction of this highly rigid polymer also brought with it the sharp decrease of the impact strength and elongation at break, which is reflected in the morphologies of the blend system obtained via scanning electron microscopy. In addition, the incorporation of α‐MSAN increased the tensile strength, flexural strength, and modulus. There were no new groups observed from Fourier‐transform infrared spectra, which means no strong specific intermolecular interactions existed between ASA and α‐MSAN. Moreover, the processibility of the blend system was obviously improved from the results of melt flow rate. J. VINYL ADDIT. TECHNOL., 22:156–162, 2016. © 2014 Society of Plastics Engineers  相似文献   

19.
Blends of polystyrene (PS) with polyolefin elastomer (POE) were prepared by a reactive extrusion method. In order to increase the compatibility of the two blending components, a Lewis acid catalyst, aluminium chloride (AlCl3), was adopted to initiate the Friedel–Crafts alkylation reaction. Fourier‐transform infrared (FTIR) spectra of the PS/POE/AlCl3 blends extracted with butanone verified the graft structure between the PS and POE. Because the in situ generated PS‐graft‐POE copolymers acted as compatibilizers, the mechanical properties of PS/POE blends were greatly improved. For example, after compatibilization, the Charpy impact strength of an 80/20 (wt%) PS/POE blend was increased from 6.29 to 8.50 kJ m?2. Scanning electron microscopy (SEM) showed that the size of the droplets decreased from 9–10 µm to less than 2 µm with the addition of AlCl3. Gel permeation chromatography (GPC) showed competition between the grafting reaction and the degradation of blending components in the presence of AlCl3. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
A fundamental understanding of crystallization behavior is essential for the processing of both virgin and recycled polymers. This research delves into the crystallization characteristics and non-isothermal crystallization kinetics of recycled polyethylene terephthalate (rPET) and its blends with poly butylene terephthalate (PBT), which have been modified using epoxy-based multifunctional chain extenders (CE). The preparation of rPET/PBT blends involved a twin-screw extruder, with varying weight ratios and different CE concentrations. Differential scanning calorimetry was employed to perform crystallization analysis on the samples. The results underscore the profound impact of blend composition on the thermal characteristics of the system, with CE exerting only a marginal influence. The glass transition temperatures (Tg) of the two polymers were measured at 49 and 79°C. During blending, the Tg values demonstrated variations relative to the proportions but did not adhere to the Fox equation. Furthermore, PBT was found to enhance the crystallization tendencies of rPET, resulting in an increase in relative crystallinity from 11% to 36%. Notably, the crystallization rate of PBT at 0.40 min−1 exceeded that of rPET at 0.36 min−1. PBT minimally affected the crystallization rate constant of rPET-dominant blends, while rPET significantly reduced the crystallization rate in PBT-dominant blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号