首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum nitride (AlN) hollow nanofibers were synthesized via plasma‐enhanced atomic layer deposition using sacrificial electrospun polymeric nanofiber templates having different average fiber diameters (~70, ~330, and ~740 nm). Depositions were carried out at 200°C using trimethylaluminum and ammonia precursors. AlN‐coated nanofibers were calcined subsequently at 500°C for 2 h to remove the sacrificial polymeric nanofiber template. SEM studies have shown that there is a critical wall thickness value depending on the template's average fiber diameter for AlN hollow nanofibers to preserve their shapes after the template has been removed by calcination. Best morphologies were observed for AlN hollow nanofibers prepared by depositing 800 cycles (corresponding to ~69 nm) on nanofiber templates having ~330 nm average fiber diameter. TEM images indicated uniform wall thicknesses of ~65 nm along the fiber axes for samples prepared using templates having ~70 and ~330 nm average fiber diameters. Synthesized AlN hollow nanofibers were polycrystalline with a hexagonal crystal structure as determined by high‐resolution TEM and selected area electron diffraction. Chemical compositions of coated and calcined samples were studied using X‐ray photoelectron spectroscopy (XPS). High‐resolution XPS spectra confirmed the presence of AlN.  相似文献   

2.
A series of poly(amic acid) (PAA) solutions were prepared by sol–gel condensation of 4,4′‐oxydianiline (ODA) and 4,4′‐oxydiphthalic anhydride (ODPA), containing various wt % (5, 10, 15) of an iron oxide precursor, that is, tris(acetylacetonato)iron(III) complex. The resulting PAA solutions were electrospun at 78 kV and collected as webs of nonwoven nanofibers of diameter ~60–70 nm and subsequently converted to iron oxide‐modified polyimide (PI) nanofibers by slow thermal imidization. Aminopropyl triethoxysilane (APTES) and tetraethoxyorthosilicate (TEOS) were used as coupling agent and silica precursor, respectively, to enhance the compatibility between organic polymer matrix and inorganic moieties. SEM images reveal smooth and defect‐free surface morphologies of the nanofibers. Superparamagnetic properties of the nanofibers were revealed by vibrating sample magnetometer (VSM). FT‐infrared spectroscopy (IR), powder XRD, thermogravimetric analysis, and differential scanning calorimetry were employed to systematically characterize material structural properties, thermal stabilities, etc. Nanowebs showed excellent thermal stability around 446°C, with a glass transition temperature around 270°C. The above study demonstrates a good example for fabrication of highly thermally stable bead‐free nanofiber webs by needleless electrospinning. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40432.  相似文献   

3.
Recently, because of the outbreak of COVID-19, the demand for various types of filter elements in protective materials has increased globally. Furthermore, new requirements for the filtration performance of PM2.5 liquid (oil) particles have been put forward. In this work, Superhydrophobic and superoleophobic composite nanofibers with excellent filtration capacity for oil and salt particles are developed through the modification of polyacrylonitrile (PAN) by fluoro-polyurethane (FPU) doping. The results show that the PAN/FPU composite nanofibers doped with 9 wt% FPU has a uniform fiber morphology with a diameter of 240 ± 30 nm. Compared to the pure PAN nanofibers, the water-based contact angle of PAN/FPU increases from 90 ± 5° to 151 ± 5°, and the oil-based contact angle increases from 58 ± 2° to 152 ± 3°. Importantly, at a high flow rate of 95 L min−1, the filtration efficiency of the PAN/FPU nanofiber membrane for 0.3 µm oil particles increases from 92 ± 1% to 99.2 ± 0.1%. After cyclic loading, the filtration efficiency of 0.3 µm oil particles remains above 98%. Meanwhile, the filtration efficiency for 0.3 µm salt particles remains at 98.23 ± 0.1%. The PAN/FPU nanofiber membrane developed in this work is effective in applications and has good market prospects as a protective filtration material.  相似文献   

4.
Nanofibers of n‐Butyl Acrylate/Methyl Methacrylate copolymer [P(BA‐co‐MMA)] were produced by electrospinning in this study. P(BA‐co‐MMA) was synthesized by emulsion polymerization. The structural and thermal properties of copolymers and electrospun P(BA‐co‐MMA) nanofibers were analyzed using Fourier transform infrared spectroscopy–Attenuated total reflectance (FTIR–ATR), Nuclear magnetic spectroscopy (NMR), and Differential scanning calorimetry (DSC). FTIR–ATR spectra and NMR spectrum revealed that BA and MMA had effectively participated in polymerization. The morphology of the resulting nanofibers was investigated by scanning electron microscopy, indicating that the diameters of P(BA‐co‐MMA) nanofibers were strongly dependent on the polymer solution dielectric constant, and concentration of solution and flow rate. Homogeneous electrospun P(BA‐co‐MMA) fibers as small as 390 ± 30 nm were successfully produced. The dielectric properties of polymer solution strongly affected the diameter and morphology of electrospun polymer fibers. The bending instability of the electrospinning jet increased with higher dielectric constant. The charges inside the polymer jet tended to repel each other so as to stretch and reduce the diameter of the polymer fibers by the presence of high dielectric environment of the solvent. The extent to which the choice of solvent affects the nanofiber characteristics were well illustrated in the electrospinning of [P(BA‐co‐MMA)] from solvents and mixed solvents. Nanofiber mats showed relatively high hydrophobicity with intrinsic water contact angle up to 120°. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4264–4272, 2013  相似文献   

5.
This article is a portion of a comprehensive study on carbon nanofiber–reinforced thermoplastic composites. The thermal behavior and dynamic and tensile mechanical properties of polypropylene–carbon nanofibers composites are discussed. Carbon nanofibers are those produced by the vapor‐grown carbon method and have an average diameter of 100 nm. These hollow‐core nanofibers are an ideal precursor system to working with multiwall and single‐wall nanotubes for composite development. Composites were prepared by conventional Banbury‐type plastic‐processing methods ideal for low‐cost composite development. Nanofiber agglomerates were eliminated because of shear working conditions, resulting in isotropic compression‐molded composites. Incorporation of carbon nanofibers raised the working temperature range of the thermoplastic by 100°C. The nanofiber additions led to an increase in the rate of polymer crystallization with no change in the nucleation mechanism, as analyzed by the Avrami method. Although the tensile strength of the composite was unaltered with increasing nanofiber composition, the dynamic modulus increased by 350%. The thermal behavior of the composites was not significantly altered by the functionalization of the nanofibers since chemical alteration is associated with the defect structure of the chemical vapor deposition (CVD) layer on the nanofibers. Composite strength was limited by the enhanced crystallization of the polymer brought on by nanofiber interaction as additional nucleation sites. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 125–133, 2001  相似文献   

6.
Natural silk, from Bombyx mori solutions were electrospun into nanofibers, with diameters ranged from 60 to 7000 nm. The effects of electrospinning temperature, solution concentration and electric field on the formation nanofibers were studied. Optical and scanning electron microscope were used to study the morphology and diameter of electrospun nanofibers. It was observed that the nanofibers became flattened with ribbon‐like shape with increasing the electrospinning temperature. The nanofiber diameter increases with the increase in the concentration of silk solution at all electrospinning temperature. With increasing the voltage of electric field at 50°C, morphology of the nanofibers changes from ribbon‐like structure to circular cross section. Referring to the literature the probable mechanism responsible for the change of morphology is pointed out. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
In this study, graphene oxide-sliver nanoparticle (GO-AgNP) composite was synthesized in situ with GO as the raw material. Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy, and scanning electron microscopy were used to characterize the composite, the spherical Ag particles with a diameter of about 36 nm were well deposited on the surface of GO nanosheets without serious agglomeration, and the antibacterial properties of the composites were also tested. Moreover, the silk fibroin (SF)/gelatin (GT) electrospun nanofiber film was prepared by electrospinning, and the structure of the SF nanofiber film was observed using a Fourier transform infrared spectrometer, X-ray diffractometer, and scanning electron microscope. The TGA curves indicated that the total weight loss rate of SF nanofibers at 400°C was significantly higher than that of SF/GT composite nanofibers (74.72% for pure SF, 62.37% for SF/GT nanocomposites). Finally, the GO-AgNP composite was combined with electrospinning SF film, which resulted in the decrease in surface roughness from 393.5 ± 123.7 nm to 109.9 ± 24.43 nm and the decrease in contact angle from 82.48° to 54.78°. Besides, the GO-AgNP composites enhanced the antibacterial performance of SF film greatly, which was conducive to its application in biological tissue engineering. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47904.  相似文献   

8.
In this work, we present the preparation of polylactic acid (PLLA)/polyaniline (PANI) conductive composite nanofibers mats. They are prepared by bulk oxidative solution polymerization of PANI onto electrospun non‐woven fibers mats of PLLA. The PANI ratio in the composite is about 70%w/w. Scanning electron microscopy (SEM) shows that PLLA nanofibers are randomly oriented, beads free with diameters of 186 ± 85 nm, The PLLA/PANI composite nanofibers diameter values are 518 ± 128 nm with a good adherence between PANI and PLLA nanofibers. DSC and XRD measurements reveal an amorphous structure of the electrospun PLLA fibers due to the rapid evaporization of the solvent. FTIR and UV–vis spectra reflect good mutual interactions between PANI and PLLA chains. The DC‐conductivities ( ) far better than other published ones for similar composites prepared by bulk oxidative solution polymerization of PANI onto other electrospun nanofiber mats or with electrospun nanofibers from a solution mixture of PLLA and PANI. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41618.  相似文献   

9.
Poly(vinylidene fluoride) (PVDF) nanofibers were fabricated via electrospinning with an investigation of various ratios of binary solvents at different temperatures. The amount of acetone influenced the morphology. Scanning electron microscopy showed a PVDF membrane composed of smooth and unblemished fibers without beads and dark spots with small diameters of 201 ± 54 nm at a dimethylformamide‐to‐acetone ratio of 4:6. The temperature of pre‐thermal treatment from room temperature to 120 °C was investigated to promote the β crystalline phase in electrospun PVDF nanofibers. The result was characterized using Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD). PVDF solution prepared at 80 °C was used to increase the β crystalline phase of the electrospun PVDF nanofibers due to the transformation of α to β phase occurring during the spinning process and also bead‐free PVDF nanofibers were obtained. Differential scanning calorimetry revealed crystallization behavior corresponding with that determined using FTIR spectroscopy and XRD. Therefore, the solvent proportion and pretreatment temperature were observed to affect ultrafine nanofiber and crystalline structure of PVDF, respectively. © 2020 Society of Chemical Industry  相似文献   

10.
The fabrication capability of zirconium carbide (ZrC) nanofibers by a novel polymeric solution was examined using electrospinning method. The electrospinnable solution was prepared from the reaction of zirconium n‐propoxide (Zr(OPr)4) with acetylacetone and acetic acid followed by the addition of polyvinylpyrrolidone (PVP) solution. By utilizing thermal and microstructural analyses such as differential scanning calorimetry–thermogravimetry (DSC–TG), field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), and Brunauer–Emmett–Teller (BET), the effect of heat treatment type on the morphology and crystallinity of as‐spun PVP/Zr(OPr)4 hybrid fibers was examined. The results showed that direct carbonization treatment of as‐spun fibers under argon atmosphere led to spherical ZrC aggregates in lack of fibrillar morphology, whereas carbonization coupled with cyclization could be recognized as the unique template to govern the morphology and crystallinity of ZrC nanofibers. Carbonization of the cyclized fibers at 1550°C in flowing argon atmosphere produced the thick, fragmented rosary‐like fibers with a diameter of 357 nm, while through a 100°C decrease in carbonization temperature to 1450°C, the thin, smooth, long, and uniform ZrC nanofibers with 176 nm diameter and a medium surface area of 23 m2/g were obtained.  相似文献   

11.
Polymer surface modification that mimicks natural behaviors has been a subject of great interest. Fabrication of polymer nanofiber arrays with various applications has been studied intensively. Avoidance of chemical solvents, reduction of processing time, improvement of the nanofiber size distribution and aspect ratios, and improvement of reproducibility have been sought for industrial value creation. This study examines an alternative fabrication methods for polymer nanofiber arrays using a combination of anodic aluminum oxide (AAO) nanoporous template and thermal nanoimprinting lithography for simple, precise processing. Based on those results, nanofiber arrays were fabricated with 40‐µm‐thick film and 50–100 nm fiber diameter polystyrene (PS) and polypropylene (PP). For this study, 50‐nm diameter PS nanofibers with 50 µm maximum length and a maximum aspect ratio of 1,000 were produced in addition to PP nanofibers having 130 µm maximum length and an aspect ratio of 2,600. The nanofiber lengths were affected considerably by molten polymer flow related to imprint processing conditions, polymer properties, AAO properties, and surface wettability between AAO and molten polymers. Moreover, AAO nanoconfinement demonstrated molecular orientation alignment of polymers that affect thermal properties, crystallinity, and mechanical properties of the obtained polymer nanofiber arrays. POLYM. ENG. SCI., 57:214–223, 2017. © 2016 Society of Plastics Engineers  相似文献   

12.
The dispersion behavior of single‐walled carbon nanotube (SWCNT) has important effects on morphological and mechanical properties of SWCNT composite nanofibers. The relationship of the dispersion conditions with morphological and mechanical characteristics for SWCNT / polyacrylonitrile (PAN) / polyvinylpyrrolidone (PVP) composite nanofibers have been examined. The SEM and TEM analyses of the nanofibers revealed that the deformation in the nanofiber structures increases with increasing concentration of SWCNTs. Tensile results showed that only 2 wt% SWCNT loading to the electrospun composite nanofibers gave rise to 10‐fold and 3‐fold increase in the tensile modulus and tenacity of nanofiber layers, respectively. Essentially, high mechanical properties and uniform morphology of the composite nanofibers were found at SWCNT concentration of ∼2 wt% due to their stable and individual dispersion. POLYM. COMPOS., 33:1951–1959, 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
In this study, silica-based nanofibers were produced via centrifugal spinning (C-spin) and subsequent calcination. The produced heat resistant media was challenged with NaCl nanoparticles to investigate their filtration performance. To obtain inorganic SiO2 nanofibers, C-spun organic PVP–TEOS nanofibers were calcinated at 300–600?°C. Effects of solution concentration and calcination temperature on crystallinity, morphology and air filtration performance of nanofibers were investigated. Scanning electron microscopy (SEM) analysis was performed to analyze fiber diameter and morphology of nanofibrous webs. Differential thermal analysis (DTA) was realized for the thermal behavior of samples. Moreover, X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) analysis were realized for further characterization. In addition to the chemical and morphological analysis, the ductility of the samples was investigated via tensile tests. Finally, calcinated webs were challenged with 0.4?μm salt particles to analyze their filtration performance. The calcinated 5?wt% TEOS/PVP silica nanofiber webs were more brittle due to three times lower precursor content. Therefore, flexibility (percent elongation) of 15?wt%TEOS/PVP sample was nearly five times higher than 5?wt%TEOS/PVP sample. The calcinated 15?wt%TEOS/PVP sample showed the highest filtration performance among all the silica nanofibers. The average fiber diameter of the optimized web was found to be the lowest, which is around 521?±?308?nm, which resulted in enhanced filtration efficiency around 75.89%.

Copyright © 2019 American Association for Aerosol Research  相似文献   

14.
《Ceramics International》2016,42(15):17154-17161
Nanofibrous alumina (Al2O3) structures were fabricated from the precursor aluminum nitrate/polyvinylpyrrolidone (PVP) nanofibers prepared using a free-surface alternating current (AC) electrospinning method. Precursor nanofibers were generated at rates up to 6.4 g/h and collected as 100–300 µm thick sheets suitable for direct conversion into the nanofibrous alumina structures. The effects of process conditions and annealing temperature on the nanofiber diameter, morphology, shrinking behavior and crystalline phase formation were investigated by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). Textural properties of Al2O3 fibrous sheets composed of micro-/meso-porous nanocrystalline γ-alumina nanofibers with 260±90 nm diameters after the calcination at temperatures in the range from 700 °C to 1000 °C were determined from N2 adsorption/desorption isotherms. Preliminary air permeability and apparent air flow resistance studies of single sheet and multilayer nanofibrous alumina membranes were performed and compared with other porous alumina membrane structures for the evaluation of their possible usage in gas filtration, separation, and other applications.  相似文献   

15.
Self-crosslinking dialdehyde carboxymethyl cellulose (DCMC)/collagen (COL) composites were prepared by blending DCMC and COL at different ratios, and the effect of DCMC amounts on composite nanofiber formation and stability were investigated. The more was the DCMC amount, the higher became the cross-linking degree, thus demonstrating that self-crosslinking system was successfully constructed. At low amount of DCMC, self-assembled DCMC/COL composite exhibited typical nanofiber structure similar to COL nanofibers, and the mean diameter of nanofibers increased from 68 ± 12 to 84 ± 15 nm; additionally, the final turbidity of DCMC/COL composite was higher than that of COL, reflecting more nanofibers formed. We conjectured that nanofiber formation was promoted via adding a small amount of DCMC. However, the inhibition of nanofiber formation was detected by reductions in turbidity at 0.3:1 < DCMC/COL ≤ 2.5:1, and the mean diameter of nanofibers decreased to 54 ± 13 nm at a DCMC/COL ratio of 2.5:1. Meanwhile, crosslinking occurred again between adjacent nanofibers during self-assembly process; therefore, partial nanofibers presented in pairs. At a DCMC/COL ratio of 5:1, nanofiber formation was completely inhibited and DCMC/COL composite consisted of aggregates. In summary, nanofiber formation was first promoted and then inhibited with increased DCMC amounts. Furthermore, low- and high-temperature stability of DCMC/COL nanofibers was better than those of COL nanofibers due to the formation of crosslinks.  相似文献   

16.
ZnO nanocrystallites have been in situ embedded in cellulose nanofibers by a novel method that combines electrospinning and solvothermal techniques. Zn(OAc)2/cellulose acetate (CA) precursor hybrid nanofibers with diameter in the range of 160–330 nm were first fabricated via the electrospinning technique using zinc acetate as precursor, CA as the carrier, and dimethylformamide (DMF)/acetone(2 : 1) mixture as cosolvent. The precursor nanofibers were transformed into ZnO/cellulose hybrid fibers by hydrolysis in 0.1 mol/L NaOH aqueous solution. Subsequently, these hybrid fibers were further solvothermally treated in 180°C glycerol oil bath to improve the crystallite structure of the ZnO nanoparticles containing in the nanofibers. The structure and morphology of nanofibers were characterized by scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction. It was found that hexagonal structured ZnO nanocrystallites with the size of ~ 30 nm were dispersed on the nanofiber surfaces and within the nanofibers with diameter of about 80 nm. The photocatalytic property of the ZnO/cellulose hybrid nanofibers toward Rhodamine (RhB) was tested under the irradiation of visible light. As a catalyst, it inherits not only the photocatalytic ability of nano‐ZnO, but also the thermal stability, good mechanical property, and solvent‐resistibility of cellulose nanofibers. The key advantages of this hybrid nanofiber over neat ZnO nanoparticles are its elasticity, dimensional stability, durability, and easy recyclability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Cellulose triacetate (CTA) nanofiber nonwoven mats were continuously electrospun by using mixed solvent of DMSO/chloroform system. The size and morphology of CTA nanofibers were investigated. It was found that CTA fibers with diameters in the range of 98 nm–1.81 μm were obtained from 8 wt % CTA solutions in 1 : 1, 3 : 2, 2 : 1, 3 : 1, 5 : 1 and 7 : 1 (v/v) DMSO/chloroform. The average diameter of CTA nanofiber was decreased and size distribution was narrowed with increasing the DMSO content in the mixed solvent. Smooth and uniform nanofibers with mean diameters of about 260 nm could be obtained from a solution of CTA in the binary system DMSO/chloroform 5 : 1(v/v) at a polymer concentration of 8 wt %. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40373.  相似文献   

18.
In this work, different sol solutions with various titanium tetraisopropoxide (TIP)/glacial acetic acid ratios in 2‐propanol with 5 wt % poly(vinyl pyrrolidone) (PVP) (Mw = 360,000 g/mol) were prepared and electrospun. Composition of the prepared sols and as‐spun TiO2/PVP nanofibers were determined by Fourier transform infrared and Raman spectroscopy methods. Morphology of the electrospun TiO2/PVP nanofibers was studied by scanning electron microscopy and transmission electron microscopy (TEM) techniques. Rheometry measurements of the sol solutions showed decrease of viscosity upon the addition of TIP to the polymer solutions with constant polymer and acid concentrations. The sol solution having the lowest viscosity (at shear rate 10 s?1) but the highest TIP/glacial acetic acid ratio showed beaded nanofibers morphology when electrospun under 10 and 12 kV applied voltage while injection rate, needle tip to collector distance, and needle gauge were kept constant. However, smooth electrospun TiO2/PVP composite nanofibers with the average nanofibers diameters (148 ± 79 nm) were achieved under the same condition when applied voltage increased to 15 kV. TEM micrographs of the electrospun TiO2/PVP nanofiber showed that the TiO2 particles with continuous structure are formed at the middle of the nanofiber and distributed along its axis. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46337.  相似文献   

19.
In this study, palladium nanoparticles were successfully embedded into modified chitosan/poly(vinyl alcohol) composite nanofibers (Pd-CS/PVA nanofibers) by electrospinning. Then, the Pd-CS/PVA nanofibers were treated at evaluated temperature to improve its solvent resistance and in situ reduce Pd2+ cations into Pd0 active species. The incorporated palladium nanoparticles with ultra small mean diameter of 3.73 ± 1.04 nm are evenly distributed inside the Pd-CS/PVA nanofiber. The resulting Pd-CS/PVA nanofiber mat exhibits high catalytic activity for Heck reaction of aromatic iodides with alkenes and can be recycled for 18 times without loss of initial activity. The high catalytic activity and stability of Pd-CS/PVA nanofiber mat can be attributed to the ultra small diameter nanofibers, strong chelating ability of chitosan, and fine embedment of palladium species inside the nanofiber. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48026.  相似文献   

20.
Solution blowing (SB) is a promising and scalable approach for the production of nanofibers. Air pressure, solution flow‐rate, and nozzle‐collector distance were determined as effective process parameters, while solution concentration was also reported as a material parameter. Here we performed a parametric study on thermoplastic polyurethane/dimethyl formamide (TPU/DMF) solutions to examine the effect of such parameters on the resultant properties such as fiber diameter, diameter distribution, porosity, and air permeability of the nanofibrous webs. The obtained solution blown thermoplastic polyurethane (TPU) nanofibers had average diameter down to 170 ± 112 nm, which is similar to that observed in electrospinning. However, the production rate per nozzle can be 20 times larger, which is primarily dependent on air pressure and solution flow rate (20 mL/h). Moreover, it was even possible to produce nanofibers polymer concentrations of 20%; however, this increased the average nanofiber diameter. The fibers produced from the TPU/DMF solutions at concentrations of 20% and 10% had average diameters of 671 ± 136 nm and 170 ± 112 nm, respectively. SB can potentially be used for the industrial‐scale production of products such as nanofibrous filters, protective textiles, scaffolds, wound dressings, and battery components. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43025.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号