首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhancing thermal conductivity of polymeric nanocomposites remains a great challenge because of the poor compatibility between nanofillers and the polymeric matrix and the aggregation effect of nanofillers. We report the enhanced thermal conductivity of poly(lactic acid) (PLA)‐based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid. Graphite nanoplatelets (GNPs) were noncovalently functionalized with tannic acid (TA) by van der Waals forces and π–π interaction without perturbing the conjugated sp2 network, thus preserving the high thermal conductivity of GNPs. PLA‐based nanocomposites with different contents of TA‐functionalized GNPs (TA‐GNPs) were prepared and characterized, and the influences of TA‐GNPs content on the morphologies, mechanical properties, and thermal properties of the composites were investigated in detail. TA‐GNPs remarkably improved the thermal conductivity of PLA up to 0.77 W/(m K), showing its high potential as a thermally conductive filler for polymer‐based nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46397.  相似文献   

2.
Using coupling agent isocyanatopropyltriethoxysilane (ICTOS) to modified nano‐TiO2, the polyimide (PI) with different titanium dioxide (TiO2) contents (0, 1, 2, 3, 4, and 5 wt %) doped nano‐composites were prepared by sol–gel method (PI/TiO2 ICTOS composites). The effect of ICTOS modification on polarization and time‐to‐breakdown properties of composites were investigated by thermally stimulated depolarization current (TSDC) method, dielectric, and Corona aging measurements. The TSDC spectra show that ICTOS modification enhanced α‐peak intensity and make β‐peak disappear in composites. Relevant trap parameters were calculated by an approximate model, and the results indicate that introduction of ICTOS is effective for the charge carrier traps, activation energy distribution in composites. Corona aging measurement show corona resistance was also sufficient improved in PI/TiO2 ICTOS composites. The changes of activation energy and intensity of traps in composites may be responsible for the corona resistance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45101.  相似文献   

3.
While it is common to add anti‐blocking agents to biaxially oriented polypropylene (BOPP) films for general use in order to prevent blocking against each other, the technology of crater‐like film surface roughness formed on the BOPP films without any additives is well known in the industrial BOPP film areas. Numerous studies have been reported on the crater‐like film surface roughness on the BOPP films since the 1980s, but its formation mechanism and the controlling method of the crater‐like film surface roughness are yet to be clarified. In our previous reports, we presented a new hypothesis of crater formation mechanism from a new point of view on sheet morphology and crater shape on the BOPP film surface. It was strongly influenced by the crystal grain shape in the surface layer of PP sheet. In this report, it was clarified that a nucleator has a big influence on the formation of the crystal grains in the surface layer of PP sheets and on the formation of craters. In addition, craters did not form on the BOPP films stretched from the sheet of which the skin layer with crystal grain was shaved, even though β crystal still remained. It was clarified that the crystal grain is trans‐crystal from the observation using TEM. Therefore, it is concluded that the existence of β crystals in the surface layer of PP sheets is not essential in order to produce craters on BOPP films, but trans‐crystals are necessary to form the craters. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3555–3564, 2013  相似文献   

4.
This article investigates the effect of modifying the polypropylene (iPP) α‐phase nucleating agent 1,3:2,4‐bis(3,4‐dimethylbenzylidene) sorbitol (DMDBS) with tetrasilanolphenyl silsesquioxane (phPOSS). It has been proven that an increasing amount of silsesquioxane leads to differences in the crystallization behavior. What is more, it has been observed that the nucleation effect that results from the addition of sorbitol derivatives is suppressed by phPOSS activity. To understand the influence of phPOSS addition on the crystallization kinetics of PP/DMDBS/phPOSS composites that have been prepared by melt processing in a twin screw extruder, differential scanning calorimetry, rotational rheometry and Fourier transform infrared spectroscopy are performed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40131.  相似文献   

5.
Ternary composite films of poly(vinyl alcohol) (PVA), boric acid (BA), and detonation nanodiamond (DND) were prepared by aqueous solution method. Because of its excellent mechanical/thermal properties and low friction coefficient, DND is expected to offer PVA film superior performance if the puzzles of particle agglomeration in polymer matrix and fragile interface reaction between DND and PVA can be settled. BA was used as a crosslinking agent to form a strong network structure between DND and PVA. Investigation on microstructure of PVA/BA/DND films and bonding mechanisms therein shows that BA, DND, and PVA may crosslink by oxo‐bridges owing to the interaction of hydroxyl groups. The Young's modulus (E) of composite films was enhanced by nearly 3.3 times with only 0.8 wt % DND loading, and the antiwear, thermal stability, and waterproof properties can be significantly improved after the crosslinking. Meanwhile, the transparency of composite films can be well preserved even with large DND content. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45449.  相似文献   

6.
In this article, the effects of different silane coupling agents: 3‐glycidyloxypropyltrimethoxysilane (GOTMS), 3‐aminopropyltriethoxysilane (APTES), and 3‐methacryloxypropyltrimethoxysilane (MPTS), on the interface between polyimide (PI) and silica (SiO2), were investigated using molecular dynamic simulation. The results indicate that binding energy between PI molecules and SiO2 surface mainly comes from van der Waals interaction. Proper silane coupling agents generate a thin membrane on the surface of SiO2, which improves the thickness of the transition layer between PI molecules and SiO2 surface. And density of the transition layer was enhanced by APTES significantly. In addition, amino group (? NH2) improves the electrostatic interaction between PI molecules and SiO2 surface rather than epoxy group (? CH? CH2? O) and methacrylic oxide group (? O? CO? C(CH3)?CH2). As a result, APTES enhances the binding energy effectively. However, excessive silane coupling agent increases the distance between PI matrices and SiO2, which deteriorates performance of the interface. In addition, GOTMS and MPTS generate a thick and dense membrane on SiO2 surface, which induces the loose transition layer and poor binding energy. Overlap parameter between PI molecules and SiO2 surface grafted with silane coupling agent can be employed to evaluate the transition layer successfully. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45725.  相似文献   

7.
In this research, we contributed to the search for potential hydrogel–silver dressings by generating hydrogel–silver nanoparticles (AgNPs) composites prepared by the dipping of the crosslinked hydrogel poly(N‐vinylpyrrolidone‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) (1:1) and poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) (1:1) into an aqueous suspension of citrate‐stabilized AgNPs. The composites obtained were evaluated by an antibacterial activity assay on Staphylococcus aureus and Escherichia coli and subjected to an in vitro cytotoxicity assay for human fibroblasts. The composite formed from the hydrogel poly(N‐vinylpyrrolidone‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium) with 3 mol % N,N‐methylene bisacrylamide showed the highest antibacterial activity and the least cytotoxicity among the composites tested; this makes it an excellent alternative as a potential dressing for the treatment of deep and exudative wounds. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39644.  相似文献   

8.
We have prepared a novel kind of magnetic nanoparticle with high adsorption capacity and good selectivity for Pb2+ ions by modifying the magnetic nanoparticles with polyvinyl alcohol (PVA) and thiourea. The resultant magnetic nanoparticles were used to adsorb Pb2+ ions from aqueous solution. The influence of the solution pH, the adsorption time, the adsorption temperature, coexisting ions, and the initial concentration of Pb2+ ions on the adsorption of Pb2+ ions were investigated. The results indicated that Pb2+ ions adsorption was an endothermic reaction, and adsorption equilibrium was achieved within 30 min. The optimal pH for the adsorption of Pb2+ ions was pH 5.5, and the maximum adsorption capacity of Pb2+ ions was found to be 220 mg/g. Moreover, the coexisting cations such as Ca2+, Co2+, and Ni2+ had little effect on adsorption of Pb2+ ions. The regeneration studies showed that thiourea functionalized PVA‐coated magnetic nanoparticles could be reused for the adsorption of Pb2+ ions from aqueous solutions over five cycles without remarkable change in the adsorption capacity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40777.  相似文献   

9.
Functional nanoparticles exhibit, e.g., a chemical functionality. For their use, a reliable immobilisation is often required. Here, a method is described, how those nanoparticles can be immobilised on a thermoplastic surface using melt processing. Gold nanoparticles (AuNP) are assembled in a layer on a substrate by adsorption. The degree of coverage can be controlled by repeating the adsorption process. During each adsorption step, the particles were arranged on the surface as chain‐like aggregates with close particle–particle contacts, rather than as isolated particles. The degree of area coverage on the substrate surface was up to 70%. The AuNP layers were transferred onto the surfaces of polycarbonate (PC) sheets by injection molding. The AuNP were partly embedded by the thermoplastic polymer and in this way permanently immobilised on the part surface. The reduction of methyl orange demonstrated the accessibility of the gold surface for small molecules. Furthermore, the fabrication of bactericide surfaces, sensor surfaces, all using AuNP immobilised on a thermoplastic part surface may become possible. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43608.  相似文献   

10.
Three types of polypropylene‐grafted silica (PGS‐2 K, PGS‐8 K and PGS‐30 K) with different grafting chain lengths were prepared. After melt‐blending PGS with polypropylene (PP), we studied the PP/PGS interface properties and the influence of PP/PGS interfaces on mechanical properties of nanocomposites. The strong matrix/particle interface was observed in PP/PGS‐30 K nanocomposites with 5 wt % particle loading as evidenced by 2.5 °C increased glass transition temperature (Tg) compared with neat PP, whereas the weak matrix/particle interface was observed in PP/PGS‐2 K nanocomposites with decreased Tg. The variations in the matrix/particle interfacial strength lead to a transition in the yield stress of nanocomposites. Compared with the unfilled PP, the yield stress of the PP/PGS‐2 K nanocomposites is decreased by 0.7 MPa, and the yield stress of the PP/PGS‐30 K nanocomposites is enhanced by 1.4 MPa. In addition, benefiting from good dispersion, the PP/PGS‐masterbatch nanocomposites with a strong matrix/particle interface not only exhibit increased Young's modulus and yield stress, but also the strain at break remains in line with the unfilled PP, which is in contrast to the conventional wisdom that the gain in modulus and strength must be at the expense of the decreased break strain. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45887.  相似文献   

11.
Chitosan coating of polyethylene (PE) was proposed as a new procedure to improve its biocompatibility and surface properties. The functionalization of the PE film surface by covalent bonding of chitosan coating and its effect on the surface mechanical properties, as surface elasticity, stiffness, and adhesion (that are important in different biological processes) were investigated by nano‐indentation, scratch, and atomic force microscopy. It has been established that chitosan grafting onto corona functionalized PE surface using various coupling agents significantly improves the surface hardness and elastic modulus although they decrease in depth of the layer. Compared to the neat PE substrate, the chitosan coated samples show significant improved friction properties and tear resistance. The surface roughness features correlate with the micro‐mechanical parameters. Therefore, the covalent immobilization of the chitosan onto PE leads to a stable coating with better mechanical performance being recommended as a promising material for medical applications and food packaging. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42344.  相似文献   

12.
With an aim to develop injectable hydrogel with improved solution stability and enhanced bone repair function, thermogelling poly(ε‐caprolactone‐cop‐dioxanone)‐poly(ethylene glycol)‐poly(ε‐caprolactone–cop‐dioxanone) (PECP)/bioactive inorganic particle nanocomposites were successfully prepared by blending the triblock copolymer (PECP) with nano‐hydroxyapatite (n‐HA) or nano‐calcium carbonate (n‐CaCO3). The hydrogel nanocomposites underwent clear sol–gel transitions with increasing temperature from 0 to 50°C. The obtained hydrogel nanocomposites were investigated by 1H NMR, FT‐IR, TEM, and DSC. It was found that the incorporation of inorganic nanoparticles into PECP matrix would lead to the critical gelation temperature (CGT) shifting to lower values compared with the pure PECP hydrogel. The CGT of the hydrogel nanocomposites could be effectively controlled by adjusting PECP concentration or the content of inorganic nanoparticles. The SEM results showed that the interconnected porous structures of hydrogel nanocomposites were potentially useful as injectable scaffolds. In addition, due to the relatively low crystallinity of PECP triblock copolymer, the aqueous solutions of the nanocomposites could be stored at low temperature (5°C) without crystallization for several days, which would facilitate the practical applications. The PECP/bioactive inorganic particle hydrogel nanocomposites are expected to be promising injectable tissue engineering materials for bone repair applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
The influence of titanium dioxide (TiO2) nanoparticles on the crystallization behavior of polypropylene was investigated by conventional differential scanning calorimetry (DSC) and fast scanning DSC measurements. The data obtained from both methods were estimated for the first time using the Lauritzen‐Hoffmann equation to analyze the behavior over a wide cooling range under nonisothermal conditions. This provides more reliable values of nucleation parameters (Kg) and surface free energy (σe). The variation of the effective energy (ΔE) was determined with the Kissinger method. Regardless of the cooling rate, both Kg and σe indicate the role of titania as a nucleating agent enhances the crystallization rate. However, the ΔE denotes that TiO2 acts as an obstacle to the mobility of chain segments at cooling rates below 150 °C/s, while, in contrast, the presence of titania enhances the chain mobility at cooling rates above 150 °C/s. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43944.  相似文献   

14.
Oil–water separation has attracted research interest due to the damages of oily wastewater caused to the environment and human beings. Electrospun fiber membrane has high oil–water separation performance. A nanofibers membrane with multi-stage roughness was prepared by electrospinning using poly(vinylidene fluoride)(PVDF)-silica blend solution as raw material. The result shows that the water contact angle (WCA) of the nanofibers membrane was promoted from 138.5 ± 1° to 150.0 ± 1.5° when the SiO2 content was increased from 0 to 3 wt%. The nanofibers membranes exhibited excellent separation efficiency (99 ± 0.1%) under gravity drive, with high separation flux of 1857 ± 101 L·m−2·h−1. More importantly, the obtained PVDF-SiO2 nanofibers membranes showed excellent multi-cycle performance and stable chemical resistance, which would make them great advantages for the practical application of oil–water separation.  相似文献   

15.
The spatial structures of oleic acid‐modified CeO2 nanoparticles in polystyrene (PS) thin films spin‐coated on silicon substrates were observed by transmission electron microscopy, when the films underwent thermal annealing above the glass‐transition temperature of PS. Before annealing, the nanoparticles have segregated to the surface of the films, and formed two‐dimensional spatial structures in the PS films. Then, the nanoparticles migrated away from the film surface to the substrate/film interface during thermal annealing, maintaining the two‐dimensional spatial structures. In addition, we demonstrated that such unidirectional migration of nanoparticles across the PS film occurs regardless of the characteristics of the substrate surface, the concentration of nanoparticles, and the thickness of the films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42760.  相似文献   

16.
As a kind of reinforcing agent, the application of nanocrystalline cellulose (NCC) is widely limited in hydrophobic polymers owing to its rich hydroxyl surface. In this study, NCC was modified with lauric acid/p‐toluensulfonyl chloride mixture, then the modified nanocrystalline cellulose (mNCC) was incorporated into biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3,4)HB) by solution casting to prepare P(3,4)HB/mNCC nanocomposites. The prepared mNCC and P(3,4)HB/mNCC nanocomposites were characterized by Fourier transform‐infrared, X‐ray diffraction, contact angle test, transmission electron microscopy, scanning electron microscopy, differential scanning calorimetric, polarized optical microscope, dynamic mechanical analysis, and thermogravimetric analysis. The results show that the crystallinity and mechanical properties of P(3,4)HB are greatly improved due to the fact that NCC can be modified successfully and the mNCC can distribute uniformly in nanoscale in the matrix with good compatibility along the interface. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2015–2022, 2013  相似文献   

17.
An effective approach for the evaluation of dispersed hydrophilic cellulose nanofibers (CNFs) in hydrophobic isotactic polypropylene (iPP) is presented using scattering and microscopic techniques for fiber analysis on nanometer and micrometer scales. iPP composites reinforced with CNF fibrous fillers were characterized by small-angle light scattering, small-angle X-ray scattering, and polarized optical microscopy measurements in the molten state in order to evaluate the shape of CNF fillers and/or larger aggregates formed from these fibers. The best dispersion results in the molten state coincided with low concentrations of CNFs. We observed the effect of CNFs on the acceleration of iPP crystal growth using wide-angle X-ray scattering and differential scanning calorimeter measurements. It was even possible to observe the nucleation morphology around CNF fibrous fillers using transmission electron microscopy.  相似文献   

18.
The melt rheology of polypropylene (PP) filled with fly ash (FA) before and after treatment with coconut water (CW) was studied for different concentration of the filler. The fly ash after coconut water treatment clearly showed additional peaks in the infrared (IR) spectra corresponding to the hydroxyl and carbonyl groups indicating good adsorption of CW on FA. The X‐ray diffraction of melt compounded PP filled with CW‐treated (CWT) FA showed large reduction of the main silica peak of FA and considerable broadening of Mullite and hematite peaks suggesting formation of fine particles by this treatment. Scanning electron microscopy (SEM) confirmed the drastic reduction of particle size in these composites. The melt rheological studies for these composites indicated considerable increase in viscosity at low filler loading for CW treated FA. The concentration dependence of melt viscosity did not follow any of the theoretical equations suggested in literature. Although, the behavior was similar to nanoparticle‐filled polymers, there were some differences especially above the critical concentration of 4.5% by volume. The frequency dependence of storage and loss modulus indicated crossover point clearly, which was greatly affected by CW treatment. The Cole–Cole plots of real and imaginary part of melt viscosity brought out the broad distribution of relaxation time for the CW treated FA. The CW treated FA melt compounded with PP gave rise to nanocomposites with uniform dispersion. However, above 4.5% by volume, there appears to be agglomerate formation along with a thin interfacial layer, which assists the melt flow even at high filler loading. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43900.  相似文献   

19.
The excellent synergistic effect of physical/mechanical properties of polyurethane/epoxy (PU/EP) interpenetrating polymer network (IPN) and the validity of nanofilling have one potential to improve the wear resistance of polymeric materials. With the aim of practical application, PU/EP IPN nanocomposites are prepared with nanodiamond (ND) as a reinforcing additive. Results showed the uniform thermal stability and the excellent compatibility between PU and EP in ND‐hybridized PU/EP IPN. Simultaneously, ND particles work as crosslinked points improving the physical/mechanical properties of ND‐hybridized PU/EP IPN, especially the wear resistance. The measurement of tribological property and the scanning electron microscope indicated that the wear resistance is able to be improved a lot by the formation of IPN and by the addition of ND. Consequently, the tribological mechanism of PU/EP IPN nanocomposites comes into being. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40244.  相似文献   

20.
Polypropylene (PP)/polyolefin elastomer (POE) blends and MgO/PP/POE nanocomposites were fabricated by melt blending. The morphology, mechanical, and electrical properties of the nanocomposites were investigated. Scanning electron microscopy showed that the surface‐modified MgO nanoparticles were well dispersed in the polymer matrix at low loadings of less than 3 phr. X‐ray diffraction demonstrated that the crystalline phases of PP in the composites were changed and that the β phase significantly increased. An examination of the electrical properties revealed that the direct‐current (dc) electric breakdown strength and space‐charge suppression effect were remarkably improved by the introduction of the surface‐modified MgO nanoparticles. In addition, obvious enhancements in the tensile modulus and strength were obtained as a result of the synergistic toughening of the POE and MgO nanoparticles. Thus, MgO/PP/POE nanocomposites with enhanced mechanical and electrical properties have great potential to be used as recyclable insulation materials for high‐voltage dc cables with large transmission capacities and high operating temperatures. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42863.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号