首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of elastomer type on the morphology, flammability, and mechanical properties of high‐impact polystyrene (HIPS)/polystyrene (PS)‐encapsulated magnesium hydroxide (MH) were investigated. The ternary composites were characterized by cone calorimetry, mechanical testing, and scanning electron microscopy. Morphology was controlled with poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) triblock copolymer or the corresponding maleinated poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS‐g‐MA). The HIPS/SEBS/PS‐encapsulated MH composites exhibited separation of the filler and elastomer, whereas the HIPS/SEBS‐g‐MA/PS‐encapsulated MH composites exhibited encapsulation of the filler by SEBS‐g‐MA. The flame‐retardant and mechanical properties of the ternary composites were strongly dependent on microstructure. The composites with an encapsulation structure showed higher flame‐retardant properties than those with a separation structure at the optimum use level of SEBS‐g‐MA. Furthermore, the composites with a separation structure showed a higher modulus and impact strength than those with an encapsulation structure. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

2.
研究了(丙烯腈/丁二烯/苯乙烯)共聚物(ABS)与高抗冲聚苯乙烯(HIPS)质量比对ABS/HIPS共混材料力学性能和加工流动性的影响,并着重对质量比分别为80/20和70/30的两种ABS/HIPS共混材料进行了改性研究。结果表明,氯化聚乙烯(PE-C)、(苯乙烯/丁二烯/苯乙烯)嵌段共聚物(SBS)和K树脂对ABS/HIPS共混材料有不同程度的增容增韧改性作用。如采用9份PE-C与3份SBS并用改性的ABS/HIPS(70/30)共混材料的拉伸强度为27.04MPa,冲击强度为32.60kJ/m2,比改性前约提高2.7倍。转矩流变仪分析表明,PE-C、SBS和K树脂改性的ABS/HIPS共混材料加工流动性和稳定性良好。维卡软化温度测试表明,改性后ABS/HIPS共混材料的耐热性能略有降低,但影响不大。扫描电子显微镜照片清晰反映出改性后ABS与HIPS两相的相容性得到了改善。  相似文献   

3.
边策  曹金波  毕立  刘峰 《上海塑料》2021,49(2):27-31
制备了不同质量比的聚苯醚/高抗冲聚苯乙烯(PPO/HIPS)合金材料,PPO/HIPS质量比为60∶40时合金的综合性能最佳。研究了不同无卤阻燃剂三苯基氧化膦(PX220)、PX220/三聚氰胺聚磷酸盐(MPP)及红磷阻燃剂(RPM650)对PPO/HIPS合金材料阻燃性能、力学性能及热性能的影响。结果表明:在添加相同质量阻燃剂的情况下,PX220/MPP复配阻燃剂可使PPO/HIPS合金材料具有较高的负荷变形温度和熔体质量流动速率,以及优异的阻燃性能和力学性能;无卤阻燃剂的加入使PPO/HIPS合金的初始分解温度降低,最大热失重速率峰值向低温区移动。  相似文献   

4.
采用熔融共混法制备了聚苯乙烯/纳米二氧化钛/氢化苯乙烯乙烯丁二烯苯乙烯共聚物(PS/纳米TiO2/SEBS)三元复合材料。研究了SEBS和纳米TiO2用量对复合材料力学性能、扭矩以及热性能的影响。利用扫描电子显微镜对复合材料冲击断面的微观形貌进行了研究。结果表明,PS/纳米TiO2/SEBS复合材料的冲击强度随SEBS含量的增加逐渐增大,拉伸强度随SEBS含量的增加逐渐减小。当PS与纳米TiO2的质量比为97/3、SEBS的用量为8份(质量份,下同)时,复合材料的综合力学性能最佳,其冲击强度为5.626 kJ/m2,拉伸强度为25.623 MPa;加入纳米TiO2和SEBS都使复合材料的热性能得到了提高;复合材料的最大扭矩与PS相比下降了17 N·m,平衡扭矩均为7 N·m;SEBS以颗粒状镶嵌到基质中,断口形貌为典型的韧性断裂。  相似文献   

5.
刘峰  李登辉 《塑料工业》2020,48(3):62-65,72
使用双螺杆挤出机制备了一系列质量比的阻燃聚苯醚(PPE)/高抗冲聚苯乙烯(HIPS)复合材料,根据PPE黏度不同分为PPE-35/HIPS体系和PPE-45/HIPS体系,研究了不同黏度的PPE及不同质量比PPE/HIPS对复合材料的力学性能、热变形温度(HDT)、熔体质量流动速率(MFR)的影响,并筛选不同牌号HIPS对复合材料性能的影响。结果表明,PPE/HIPS复合材料中,拉伸强度、弯曲强度随HIPS含量的增加呈线性下降趋势,PPE-45/HIPS体系的拉伸强度和弯曲强度普遍优于PPE-35/HIPS体系;冲击强度存在一个树脂最优质量比,PPE-35/HIPS体系中树脂最优质量比为70∶30,PPE-45/HIPS体系中树脂最优质量比为60∶40。HDT随HIPS含量的增加呈线性下降趋势,而MFR随HIPS含量增加呈线性递增趋势,PPE-35/HIPS体系的HDT低于PPE-45/HIPS体系而MFR高于PPE-45/HIPS体系。复合材料的强度由主体树脂PPE决定,HIPS (476L)对PPE-35的增韧改性效果更好,成型加工性能更佳。  相似文献   

6.
通过熔融挤出的方法制备了不同玻纤含量增强的聚苯醚合金(MPPO),并对复合材料的力学性能和热性能进行了详细的研究。通过DSC分析测试发现弹性体苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)与聚苯醚合金(PPO/HIPS)制备的复合材料只有一个明显的玻璃化转变温度Tg,说明SEBS与聚苯醚合金有着良好的相容性,SEBS的加入可明显改善聚苯醚合金的缺口冲击强度。此外,复合材料随着玻璃纤维含量的增加,其力学性能和热变形温度得到了明显的提高,并达到与国外进口同类材料性能相当的水平。  相似文献   

7.
研究了国产聚苯醚(PPO)与高抗冲聚苯乙烯(HIPS)合金的工程化,探讨了PPO含量与PPO/HIPS合金拉伸强度、弯曲强度、冲击强度的关系;研究发现(苯乙烯/乙烯-丁烯/苯乙烯)共聚物(SEBS)对此合金具有增韧效果,并研究了抗氧剂1010对PPO/HIPS合金性能的影响。  相似文献   

8.
采用二段混炼的方法,制备低密度聚乙烯/苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(LDPE/SEBS)复合材料。探究SEBS的不同含量对LDPE/SEBS力学性能的影响。通过双叔丁基过氧异丙基苯(BIBP)化学交联LDPE/SEBS,制备LDPE/SEBS/BIBP复合材料,探究LDPE/SEBS/BIBP的力学性能、微观形貌、凝胶含量、热学性能和流变性能。结果表明:SEBS用量为50份时,LDPE/SEBS具有较好的力学性能。当BIBP用量为0.9份,LDPE/SEBS/BIBP的力学性能最佳,拉伸强度为26.22 MPa,断裂伸长率为732.23%。随着BIBP用量的增加,LDPE/SEBS/BIBP的界面相容性、凝胶含量和黏度上升,熔融温度、结晶度和损耗模量下降,储能模量曲线的斜率先下降后趋于稳定。  相似文献   

9.
This work was divided into three parts. First, high‐impact polystyrene (HIPS) was submitted to a series of extrusion cycles with the objective of evaluating the consequent variations in its thermal and mechanical properties. The results showed slight variations in both the thermal and mechanical properties of HIPS. Second, degraded HIPS/styrene–ethylene–butylene–styrene (SEBS) blends and degraded HIPS/styrene–butadiene rubber (SBR) blends were prepared to evaluate the influence of the elastomeric concentration on the polymer's properties. The incorporation of SEBS or SBR allowed the recovery of the initial properties shown by virgin HIPS. Finally, blends of degraded HIPS with 2 wt % SEBS or SBR were extruded through four cycles. The mechanical properties remained constant with 2% SEBS added, whereas the mixtures of HIPS with 2% SBR showed an increase in the tensile strength as the number of extrusion cycles increased. The Vicat softening temperature decreased in both cases. The use of differential scanning calorimetry permitted the observation of differences in the crosslinking reactions of different samples as a function of the number of extrusion cycles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
HIPS/纳米蒙脱土复合材料的研究   总被引:3,自引:0,他引:3  
添加不同种类,不同数量的纳米蒙脱土,混炼制得HIPS/纳米蒙脱土复合材料,以改善高抗冲聚苯乙烯(HIPS)的性能,测试了其力学性能,热稳定性性。结果表明,添加3%烘干的蒙脱土Cloisite 30A的HIPS/纳米蒙脱土复合材料具有较好的综合力学性能,可作为工程塑料使用;HIPS/纳米蒙脱土复合材料的热稳定性与阻燃性有所改善,添加5%烘干的蒙脱土Cloisite 15A的HIPS/纳米蒙脱土复合材料具有较好的阻燃性。  相似文献   

11.
Polymeric foam with high expansion ratio, well-defined cell structure, and excellent flame retardant properties is essential for broadening its applications. Polyphenylene oxide (PPO) is a kind of cost-effective engineering plastic with excellent flame retardancy, anti-dripping behavior, and good mechanical strength, but suffers from its poor processability. In this study, microcellular PPO composite foams were fabricated by applying a solid-state foaming technology using compressed CO2 as the blowing agent. High-impact polystyrene (HIPS) phase was introduced with the aim to improve the fluidity and foaming ability of PPO composites. It was interesting to find that the 18–48% HIPS loading significantly increased the expansion ratio, that is, 1.8–3.3 versus, 10.8–14.3, and broadened the optimum foaming temperature of PPO composite foams, attributing to the miscible character between PPO and HIPS and excellent foaming ability of HIPS. Furthermore, the as-prepared PPO/HIPS composite foams exhibited high limited oxygen index (LOI) of 22.0–29.9%, low horizontal flammability rate (HFR) of 60.5–141.2 mm/min, and anti-dripping behavior, and the void fraction was verified to be a critical parameter to determine the flame retardant performance of the composite foam. Besides its lightweight and excellent flame retardant properties, PPO composite foams also presented uncompromised tensile properties and well-defined thermal insulation properties.  相似文献   

12.
In general, polymer blends show a degradation behavior different from a simple combination of the individual components, making any forecast difficult without experiments. Interactions between polymers can sensibilize or stabilize the blend against degradation. In this work, the thermal and photooxidative degradation of blends of poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) and high impact polystyrene (HIPS) have been studied under accelerated conditions. The extent of degradation was accompanied by infrared spectroscopy (FTIR) and Raman spectroscopy (FT‐Raman) and impact resistance and strain–stress testing followed its influence on the macroscopic properties of the blends. The results showed that HIPS and the blend containing 60 wt % of PPO are more susceptible to thermal and photochemical degradation, while the blends containing 40 and 50 wt % of PPO are more stable. Infrared and Raman spectroscopic analyses showed that the degradation of HIPS and its blends is caused not only by degradation of the polybutadiene phase. Effects of interactions, such as exchange of energy in excited state between the PPO and PS components of the polymeric matrix may also be responsible for the degradation and loss of mechanical properties of the PPO/HIPS blends. The chemical degradation directly affects the mechanical properties of the samples with photodegradation being more harmful than the thermal degradation at 75°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
Ternary composites of high‐impact polystyrene (HIPS), elastomer, and magnesium hydroxide filler encapsulated by polystyrene were prepared to study the relationships between their structure and mechanical properties. Two kinds of morphology were formed. Separation of elastomer and filler was found when a nonpolar poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] triblock copolymer (SEBS) was incorporated. Encapsulation of filler by elastomer was achieved by using the corresponding maleinated SEBS (SEBS‐g‐MA). The mechanical properties of ternary composites were strongly dependent on microstructure. In this study, the composites with separate dispersion structure showed higher elongation, modulus and impact strength than those of encapsulation structure. Impact‐fracture surface observation showed that the toughening mechanism was mainly due to the massive cavitation and extensive matrix yielding. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5184–5190, 2006  相似文献   

14.
The compatibilizing effect of the triblock copolymer poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) on the morphological and mechanical properties of virgin and recycled polypropylene (PP)/high‐impact polystyrene (HIPS) blends was studied, with the properties optimized for rigid composite films. The components of the blend were obtained from municipal plastic waste, PP being acquired from mineral water bottles (PPb) and HIPS from disposable cups. These materials were preground, washed only with water, dried with hot air, and ground again (PPb) or agglutinated (HIPS). Blends with three different weight ratios of PPb and HIPS (6:1, 6:2, and 6:3) were prepared, and three different concentrations of SEBS (5, 6, and 7 wt %) were used for investigations of its compatibilizing effect. Scanning electron microscopy showed that SEBS reduced the diameter of dispersed HIPS particles in the globular and fibril shapes and improved the adhesion between the disperse phase and the matrix. However, SEBS interactions with PPb and HIPS influenced the mechanical properties of the compatibilized PPb/HIPS/SEBS blends. An adequate composition of PP/HIPS, for both virgin and recycled blends, for applications in composite films with characteristics similar to those of synthetic paper was obtained with a minimal amount of SEBS and a maximal HIPS/PP ratio in the range of concentrations studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2861–2867, 2003  相似文献   

15.
低相对分子质量PC合金的形态结构与增韧   总被引:1,自引:0,他引:1  
潘利华 《中国塑料》2002,16(9):30-33
采用扩链剂PMPI增粘低相对分子质量聚碳酸酯,同时在相容剂BCP的存在下与HIPS共混,研究多组分共混物的形态结构,流动性和力学性能,相差显微镜观察结果表明,共混物60/40/2/3HIPS/IPC/PMPI/BCP与60/40/3 HIPS/hPC/BCP具有相似的形态结构,共混物的相容性在强剪切流场的作用下得到显著提高,而流动性则下降,此外,共混物60/40/2/3/HIPS/IPC/PMPI/BCP与60/40/3HIPS/hPC/BCP 的流动性以及力学性能也非常接近,在相容剂BPCP的存在下,60/40/3HIPS/hPC/BCP共混物的弯曲强度和缺口冲击强度分别达到70MPa和15kJ/m^2,基本达到PC的力学性能。  相似文献   

16.
采用熔融共混和模压成型方法,制备了玻璃纤维(GF)增强木质素/聚丙烯(PP)复合材料,研究复合材料力学性能、热性能、晶型结构和微观结构。结果表明:当GF加入质量分数为30%时,复合材料的冲击强度、弯曲强度和弯曲模量较未加GF的分别提高了1.21,1.74和0.79倍;热稳定性、结晶性和结晶速率也有明显的提高。利用扫描电镜观察其断裂形貌,探讨其增韧机理。  相似文献   

17.
通过熔融挤出制备聚苯醚接枝马来酸酐(PPO-g-MAH)作为聚苯醚/尼龙6(PPO/PA6)共混物的相容剂,再与苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS)、碳纤维(CF)共混制备PPO/PA6/PPO-g-MAH/SEBS/CF复合材料。CF经侧喂料口加入,通过改变螺杆转速来制备不同CF含量的复合材料。通过动态热机械分析(DMA)、毛细管流变和力学性能测试等方法研究了CF含量变化对复合材料热机械性能、流变行为、力学性能等的影响。再与相同条件下制备的玻璃纤维(GF)复合材料进行比较,通过扫描电子显微镜观察(SEM)和力学性能测试,表明CF能够更好的被基体树脂包覆,制得的复合材料性能更优。  相似文献   

18.
Compatibilization of polymer blends of high‐impact polystyrene (HIPS) and high‐density polyethylene (HDPE) blend by styrene/ethylene–butylene/styrene (SEBS) was elucidated. Polymer blends containing many ratios of HIPS and HDPE with various concentrations of SEBS were prepared. The Izod impact strength and elongation at break of the blends increased with increases in SEBS content. They increased markedly when the HDPE content was higher than 50 wt %. Tensile strength of blends increased when the SEBS concentration was not higher than 5 pphr. Whenever the SEBS loading was higher than 5 pphr, the tensile strength decreased and a greater decrease was found in blends in which the HDPE concentration was more than 50 wt %. The log additivity rule model was applied to these blends, which showed that the blends containing the HIPS‐rich phase gave higher compatibility at the higher shear rates. Surprisingly, the blends containing the HDPE‐rich phase yielded greater compatibility at the lower shear rates. Morphology observations of the blends indicated better compatibility of the blends with increasing SEBS concentration. The relaxation time (T2) values from the pulsed NMR measurements revealed that both polymer blends became more compatible when the SEBS concentration was increased. When integrating all the investigations of compatibility compared with the mechanical properties, it is possible to conclude that SEBS promotes a certain level of compatibilization for several ratios of HIPS/HDPE blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 742–755, 2004  相似文献   

19.
Flame retardant high impact polystyrene (HIPS) was prepared by melt blending HIPS, nano‐modified aluminum trihydrate (nano‐CG‐ATH), red phosphorus masterbatch (RPM), and modified polyphenylene oxide (MPPO). Styrene‐butadiene‐styrene (SBS) was used as a toughener in this research. The effects of nano‐CG‐ATH, RPM, MPPO, and SBS on properties of HIPS composites were studied by combustion test, mechanical tests, and thermogravimetric analysis. The morphologies of fracture surfaces and char layers were characterized through scanning electron microscopy (SEM). The HIPS/nano‐CG‐ATH/RPM/MPPO (60/6/9/25) composite and its combustion residues at various temperatures were characterized by Fourier transform infrared (FTIR) spectra analysis. The results showed that the UL‐94 rating of the HIPS/nano‐CG‐ATH/RPM/MPPO (60/6/9/25) composite reached V‐0 and its char layer after flame test was integrated, but its impact strength was low. Addition of SBS improved its impact property and did not influence its thermal and flame retardant properties but lowered its tensile strength and flexural modulus to some extent. The FTIR spectra confirmed that the P O C group was present in the charred substance. POLYM. COMPOS., 28:551–559, 2007. © 2007 Society of Plastics Engineers  相似文献   

20.
The dynamic mechanical properties of randomly oriented intimately mixed hybrid composites based on pineapple leaf fibers (PALF) and glass fibers (GF) in unsaturated polyester (PER) matrix were investigated. The PALFs have high‐specific strength and improve the mechanical properties of the PER matrix. In this study, the volume ratio of the two fibers was varied by incorporating small amounts of GF such as PALF/GF, 90/10, 80/20, 70/30, and 50/50, keeping the total fiber loading constant at 40 wt%. The dynamic modulus of the compositeswas found to increase on GF addition. The intimately mixed (IM) hybrid composites with PALF/GF, 80/20 (0.2 Vf GF) showed highest E′ values and least damping. Interestingly, the impact strength of the composites was minimum at this volume ratio. The composites with 0.46 Vf GF or PALF/GF (50/50) showed maximum damping behavior and highest impact strength. The results were compared with hybrid composites of different layering patterns such as GPG (GF skin and PALF core) and PGP (PALF skin and GF core). IM and GPG hybrid composites are found more effective than PGP. The activation energy values for the relaxation processes in different composites were calculated. The overall results showed that hybridization with GF enhanced the performance properties. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号