首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel optically active and racemic poly(N‐propargylamides) bearing tyrosine pendants (LPT, DPT, and RPT) were synthesized and characterized. The polymers possessed moderate molecular weights and were thoroughly soluble in common organic solvents. The secondary structure of these three polymers in chloroform was studied and the results indicated that LPT and DPT could adopt helical structures with predominantly one‐handed screw sense according to their intense Cotton effect and large specific rotation values, while RPT adopted random coiled polymer chain. The amide groups could form amide‐amide hydrogen bonds to engender the twist of dihedral angle and the strong steric repulsion of phenol groups might have the opposite effect on the helix. The helical structure of the optically active polymers were conclusively constructed and stabilized by the optimization of intra‐ and intermolecular hydrogen bonding and steric repulsion of the side chains. Moreover, the infrared emissivity values of LPT and DPT at 30 °C were 0.682 and 0.671, which were much lower than RPT. LPT and DPT also showed superior heat resistance due to their unique helical conformation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44824.  相似文献   

2.
A novel A2BA2‐type thermosensitive four‐armed star block copolymer, poly(N‐isopropyl acrylamide)2b‐poly(lactic acid)‐b‐poly(N‐isopropyl acrylamide)2, was synthesized by atom transfer radical polymerization and characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography. The copolymers can self‐assemble into nanoscale spherical core–shell micelles. Dynamic light scattering, surface tension, and ultraviolet–visible determination revealed that the micelles had hydrodynamic diameters (Dh) below 200 nm, critical micelle concentrations from 50 to 55 mg/L, ζ potentials from ?7 to ?19 mV, and cloud points (CPs) of 34–36°C, depending on the [Monomer]/[Macroinitiator] ratios. The CPs and ζ potential absolute values were slightly decreased in simulated physiological media, whereas Dh increased somewhat. The hydrophobic camptothecin (CPT) was entrapped in polymer micelles to investigate the thermo‐induced drug release. The stability of the CPT‐loaded micelles was evaluated by changes in the CPT contents loaded in the micelles and micellar sizes. The MTT cell viability was used to validate the biocompatibility of the developed copolymer micelle aggregates. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4137–4146, 2013  相似文献   

3.
A series of thermoresponsive poly(γ‐propyl‐L‐glutamate)‐graft‐(oligo ethylene glycol)s (PPLG‐g‐OEGs) with different main‐chain and side‐chain lengths have been synthesized via copper‐mediated alkyne‐azide 1,3‐dipolar cycloaddition between poly(γ‐azidopropyl‐L‐glutamate)s (PAPLG) and propargyl terminated oligo ethylene glycols (Pr‐OEGs). Fourier transform infrared spectrometer analysis revealed that PAPLG10 adopted 39.4% β‐sheet, 47.4% α‐helix, and 13.2% random coil while PAPLG with longer main‐chain length (DP = 37 and 88) and PPLG‐g‐OEGs adopted exclusive α‐helix in the solid state. Circular dichroism analysis revealed that PPLG‐g‐OEGs adopted α‐helical conformations with helicities in the range of 50~100%. The thermoresponsive behaviors of PPLG‐g‐OEGs in water have been studied by dynamic light scattering. The polymer concentration, main‐/side‐chain length, and helicity collectively affected their cloud point temperatures. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41022.  相似文献   

4.
Shape memory polymers (SMPs) are an emerging class of active polymers that may be used for a range of reconfigurable structures. In this study, the thermomechanical and shape memory behavior of a thermosetting SMP was investigated using large‐scale compressive tests and small‐scale indentation tests. Results show that the SMP exhibits different deformation modes and mechanical properties in compression than in tension. In glassy state, the SMP displays significant plastic deformation and has a much higher modulus and yield strength in comparison to those obtained in tension. In rubbery state, the SMP behaves like a hyperelastic material and again has a much higher modulus than that obtained in tension. The SMPs were further conditioned separately in simulated service environments relevant to Air Force missions, namely, (1) exposure to UV radiation, (2) immersion in jet‐oil, and (3) immersion in water. The thermomechanical and shape recovery properties of the original and conditioned SMPs were examined under compression. Results show that all the conditioned SMPs exhibit a decrease in Tg as compared to the original SMP. Environmental conditionings generally result in higher moduli and yield strength of the SMPs in the glassy state but lower modulus in the rubbery state. In particular, the UV exposure and water immersion, also weaken the shape recovery abilities of the SMPs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
pH and temperature responsive nanocomposite hydrogels were synthesized with sodium alginate (NaAlg), N‐isopropylacrylamide (NIPA), and nanoclay. The structure, morphology, thermal behavior, and swelling and deswelling behaviors of the hydrogels were studied. The NaAlgm/PNIPA/Clayn hydrogels revealed a highly porous structure in which the pore sizes decreased and the amount of pores increased with increasing the nanoclay content in the hydrogels. PNIPA retained its own characteristics regardless of the amount of NaAlg and nanoclay. The effect of pH and nanoclay content on the swelling and effect of temperature on the deswelling behavior were investigated. The equilibrium swelling ratios of the nanocomposite hydrogels increased with increasing the pH from 2 to 6. The maximum swelling was attained at pH 6. Deswelling increased with increasing the nanoclay content in the hydrogels. The hydrogels were found to be pH and temperature responsive. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43222.  相似文献   

6.
Four siloxane‐containing benzoxazine monomers and telechelic benzoxazine oligomers were synthesized from 1,3‐bis(3‐aminopropyl)‐1,1,3,3‐tetramethyldisiloxane, α,ω‐bis(3‐aminopropyl)polydimethylsiloxane, phenol, o‐allylphenol, and formaldehyde. The length of the siloxane segment affects the polymerization reaction of the benzoxazine monomers and telechelic benzoxazine oligomers. The dynamic mechanical properties of the corresponding polybenzoxazines depend primarily on the structure of phenol and the length of the siloxane segment. The polybenzoxazines exhibit one‐way dual‐shape memory behavior in response to changes in temperature. The thermally induced shape memory effects of the polybenzoxazines were characterized by bending and tensile stress–strain tests with a temperature program based on their glass transition temperatures. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44121.  相似文献   

7.
Novel polyurethanes (PUs) based on 1,3‐bis(hydroxymethyl) benzimidazolin‐2‐one and 1,3‐bis(hydroxymethyl) benzimidazolin‐2‐thione as hard segments with two aromatic diisocyanates, viz., 4,4′‐diphenylmethane diisocyanate and toluene 2,4‐diisocyanate, were prepared. Polymer structures were established by Fourier transform infrared and nuclear magnetic resonance spectroscopy. Morphology of the PUs was studied by differential scanning calorimetry and thermogravimetry. All PUs contain domains of crystalline and amorphous structures as indicated by X‐ray diffraction experiments. Furthermore, polymers were insoluble in the majority of organic solvents and, hence, their solution characterization was not possible. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2236–2244, 2005  相似文献   

8.
Shape‐memory polymers (SMPs) are an emerging class of active polymers that can be used on a wide range of reconfigurable structures and actuation devices. In this study, an epoxy‐based SMP was synthesized, and its thermomechanical behaviors were comprehensively characterized. The stress–strain behavior of the SMP was determined to be nonlinear, finite deformation in all regions. Strain‐energy‐based models were used to capture the complicated stress–strain behavior and shape‐recovery response of the SMP. Among various strain energy functions, the stretch‐based Ogden model provided the best fit to the experimental observations. Compared to the sophisticated models developed for SMPs, the strain‐energy‐based model was found to be reliable and much easier to use for practical SMP designs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41861.  相似文献   

9.
BACKGROUND: Shape memory polymers are capable of fixing a transient shape and of recovering their original dimensions by the application of an external stimulus. Their major drawback is their low stiffness compared to smart materials based on metals and ceramics. To overcome this disadvantage, nanocellulose was utilized as reinforcement. RESULTS: Composites were prepared by casting stable nanocellulose/segmented polyurethane suspensions. The heat of melting of the polyurethane soft segment phase increased on cellulose addition. Composites showed higher tensile modulus and strength than unfilled films (53% modulus increase at 1 wt% nanocellulose), with higher elongation at break. Creep deformation decreased as cellulose concentration increased (36% decrease in 60‐minute creep by addition of 1 wt% nanocellulose). The nanocomposites displayed shape memory properties equivalent to those of the neat polyurethane, with recoveries of the order of 95% (referred to second and further cycles). CONCLUSIONS: It is possible to markedly improve the rigidity of shape memory polymers by adding small amounts of well‐dispersed nanocellulose. However, this improvement did not have substantial effects on the material shape fixity or recovery. Shape memory behavior seems to continue to be controlled by the polymer properties. Copyright © 2007 Society of Chemical Industry  相似文献   

10.
A macromolecular hindered phenol antioxidant, polyhydroxylated polybutadiene containing thioether binding 2,2′‐thiobis(4‐methyl‐6‐tert‐butylphenol) (PHPBT‐b‐TPH), was synthesized via a two‐step nucleophilic addition reaction using isophorone diisocyanate (IPDI) as linkage. First, the ? OH groups of PHPBT reacted with secondary ? NCO groups of IPDI to form the adduct PHPBT‐NCO, then the PHPBT‐b‐TPH was obtained by one phenolic ? OH of 2,2′‐thiobis(4‐methyl‐6‐tert‐butylphenol) (TPH) reacting with the PHPBT‐NCO. The PHPBT‐b‐TPH was characterized by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (1H‐NMR), 13C‐NMR, and thermogravimetric analysis, and its antioxidant activity in natural rubber was studied by an accelerated aging test. Influences of reaction conditions on the two nucleophilic reactions between ? OH group and ? NCO group were investigated. In addition, catalytic mechanism for the reaction between PHPBT‐NCO and TPH was discussed. The results showed that the adduct PHPBT‐NCO could be obtained by using dibutyltin dilaurate (DBTDL) as catalyst, and the suitable temperature and DBTDL amount were 35°C and 3 wt %, respectively. However, triethylamine (TEA) was more efficient than DBTDL to catalyze the reaction between PHPBT‐NCO and TPH because of steric hindrance effect. In addition, it was found that the thermal stability and antioxidant activity of PHPBT‐b‐TPH were higher than those of the low molecular weight antioxidant TPH. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40942.  相似文献   

11.
Epoxy‐based shape‐memory polymers (ESMPs) are a type of the most promising engineering smart polymers. However, their inherent brittleness limits their applications. Existing modification approaches are either based on complicated chemical reactions or done at the cost of the thermal properties of the ESMPs. In this study, a simple approach was used to fabricate ESMPs with the aim of improving their overall properties by introducing crosslinked carboxylic nitrile–butadiene nanorubber (CNBNR) into the ESMP network. The results show that the toughness of the CNBNR–ESMP nanocomposites greatly improved at both room temperature and the glass‐transition temperature (Tg) over that of the pure ESMP. Meanwhile, the increase in the toughness did not negatively affect other macroscopic properties. The CNBNR–ESMP nanocomposites presented improved thermal properties with a Tg in a stable range around 100 °C, enhanced thermal stabilities, and superior shape‐memory performance in terms of the shape‐fixing ratio, shape‐recovery ratio, shape‐recovery time, and repeatability of shape‐memory cycles. The combined property improvements and the simplicity of the manufacturing process demonstrated that the CNBNR–ESMP nanocomposites are desirable candidates for large‐scale applications in the engineering field as smart structural materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45780.  相似文献   

12.
We conducted a systematic experimental investigation to characterize the shape‐memory effect in a commercial poly(ether ether ketone) (PEEK), which is a very important high‐temperature polymers at present. The focus was on the influence of the programming conditions and heating temperature for recovery on the shape‐recovery ratio (Rr). We concluded that PEEK is not only an important engineering polymer as it is traditionally known but is also an excellent high‐temperature shape‐memory polymer. For a residual programming strain of 30%, the maximum Rr was about 90%. It was revealed that it was practically feasible to program PEEK at room temperature and to lower the recovery temperature from its melting temperature range to around its glass‐transition temperature. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39844.  相似文献   

13.
In this work, a high temperature shape memory polymer based on polyimide (PI) ionomer is prepared by introducing ionic crosslinked interaction. The ionic crosslinked points are introduced to polymer networks through the reaction between polyamic acid and calcium hydroxide before thermal imidization. The crosslinked reaction, microtopography, mechanical, thermal, and shape memory properties of PI ionomers are systematically investigated. The results show the introduction of ionic crosslinked interaction could enhance the glass transition temperature, mechanical, and shape recovery performance of ODA‐ODPA, a PI. The prepared ionomers exhibit good high temperature shape memory properties around 270 °C. The shape fixation and shape recovery ratio are over 99% and 90%, respectively. This method provided a new sight of preparing high temperature shape memory polymer, which could be used in severe conditions, like aerospace industry field. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43630.  相似文献   

14.
Thermoresponsive and pH‐responsive gels were synthesized from N‐isopropyl acrylamide (NIPA) and N,N′‐dimethyl aminoethyl methacrylate (DMAEMA) monomers. Gelation reactions were carried out with both conventional free‐radical polymerization (CFRP) and controlled free‐radical polymerization [reversible addition fragmentation transfer (RAFT)] techniques. The CFRP gels were prepared by polymerizing mixtures of NIPA and DMAEMA in 1,4‐dioxane in presence of N,N'‐methylene bisacrylamide (BIS) as cross‐linker. The RAFT gels were prepared by a the polymerization of NIPA via a similar process in the presence of different amounts of poly(N,N′‐dimethyl aminoethyl methacrylate) macro chain‐transfer agent and the crosslinker. These gels were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry. SEM analysis revealed a macroporous network structure for the RAFT gels, whereas their volume phase‐transition temperatures (VPTTs) were found to be in the range 32–34°C, close to that of poly(N‐isopropyl acrylamide) gels. However, the CFRP copolymer gels exhibited a higher VPTT; this increased with increasing DMAEMA content. The RAFT gels exhibited higher swelling capabilities than the corresponding CFRP gels and also showed faster shrinking–reswelling behavior in response to changes in temperature. All of the gels showed interesting pH‐responsive behavior as well. The unique structural attributes exhibited by the RAFT gels can potentially open up opportunities for developing new materials for various applications, for example, as adsorbents or carrier of drugs or biomolecules. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42749.  相似文献   

15.
Temperature‐responsive polymers have recently gained importance due to their applications in drug delivery. Herein, temperature‐responsive graft copolymer (Alg‐g‐PDEAAm) of alginate and N,N‐diethylacrylamide was synthesized by microwave‐assisted copolymerization using potassium persulfate/N,N,N′,N′‐tetramethylethylenediamine initiator system. The reaction conditions for the best grafting (331%) have been optimized by changing microwave irradiation time, temperature, N,N‐diethylacrylamide, and alginate concentrations. The spectroscopic characteristic, thermal properties, and surface morphology of the copolymers were investigated by FTIR, 1H‐NMR, DSC/TGA, XRD, gel permeation chromatography, and SEM. Furthermore, low critical solution temperatures of Alg‐g‐PDEAAm copolymers were detected by UV spectroscopy. Swelling ratio of graft microspheres was carried out at 25, 32, and 37 °C, and microspheres were found exhibiting temperature‐responsive property. Cytotoxicity test indicated the Alg‐g‐PDEAAm copolymer and its microsphere were biocompatible. Therefore, based on the results the synthesized temperature‐responsive copolymer could be considered as a promising biomaterial. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46688.  相似文献   

16.
Shape‐memory polyurethane/multiwalled carbon nanotube (SMP–MWNT) composites with various multiwalled carbon nanotube (MWNT) contents were synthesized, and the corresponding SMP–MWNT fibers were prepared by melt spinning. The influence of the MWNT content on the spinnability, fracture morphology, thermal and mechanical properties, and shape‐memory behavior of the shape‐memory polymer was studied. The spinning ability of SMP–MWNTs decreased significantly with increasing MWNT content. When the MWNT content reached 8.0 wt %, the fibers could not be produced because of the poor rheological properties of the composites. The melt‐blending, extrusion, and melt‐spinning processes for the shape‐memory fiber (SMF), particularly at low MWNT contents, caused the nanotubes to distribute homogeneously and preferentially align along the drawing direction of the SMF. The crystallization in the SMF was promoted at low MWNT contents because it acted as a nucleation agent. At high MWNT contents, however, the crystallization was hindered because the movement of the polyurethane chains was restricted. The homogeneously distributed and aligned MWNTs preserved the SMF with high tenacity and initial modulus. The recovery ratio and recovery force were also improved because the MWNTs helped to store the internal elastic energy during stretching and fixing. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
A series of segmented polyurethanes (PUs) with novel thermosensitive shape‐memory behavior were synthesized via the in situ addition of a small amount of 1‐octadecanol (ODO) to a PU system. For comparison, liquid paraffin (LP) modified PUs were also synthesized. The effects of a small amount of ODO or LP on the PU suprastructure and the thermosensitive shape‐memory properties were studied with X‐ray diffraction, differential scanning calorimetry, dynamic mechanical analysis, and shape‐memory studies. The results indicated that the in situ addition of a small amount of ODO (e.g., 0.3 wt %) remarkably promoted microphase separation, facilitating the ordered packing of soft segments and the formation of perfect hard‐segment domains and thus significantly improving the shape‐memory properties. In contrast, LP had less significant influence on the shape‐memory behavior because of the macrophase separation of these nonpolar alkyl chains from the PU system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5224–5231, 2006  相似文献   

18.
Three microparticle additives, tungsten (W), zirconium oxide (ZrO2) , and barium sulfate (BaSO4) were selected to enhance the radio‐opacity in shape memory polymer (SMP) foam biomaterials. The addition of filler causes no significant alterations of glass transition temperatures, density of the materials increases, pore diameter decreases, and total volume recovery decreases from approximately 70 times in unfilled foams to 20 times (4% W and 10% ZrO2). The addition of W increases time to recovery; ZrO2 causes little variation in time to shape recovery; BaSO4 increases the time to recovery. On a 2.00 mean X‐ray density (mean X.D.) scale, a GDC coil standard has a mean X.D. of 0.62 ; 4% W enhances the mean X.D. to 1.89, 10% ZrO2 to 1.39 and 4% BaSO4 to 0.74. Radio‐opacity enhancing additives could be used to produce SMP foams with controlled shape memory kinetics, low density , and enhanced X ‐ray opacity for medical materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42054.  相似文献   

19.
pH and thermo‐responsive graft copolymers are reported where thermo‐responsive poly(N‐isopropylacrylamide) [poly(NIPAAm), poly A ], poly(N‐isopropylacrylamide‐co‐2‐(diethylamino) ethyl methacrylate) [poly(NIPAAm‐co‐DEA), poly B ], and poly(N‐isopropylacrylamide‐co‐methacrylic acid) [poly(NIPAAm‐co‐MAA), poly C ] have been installed to benzaldehyde grafted polyethylene glycol (PEG) back bone following introducing a pH responsive benzoic‐imine bond. All the prepared graft copolymers for PEG‐g‐poly(NIPAAm) [ P‐N1 ], PEG‐g‐poly(NIPAAm‐co‐DEA) [ P‐N2 ], and PEG‐g‐poly(NIPAAm‐co‐MAA) [ P‐N3 ] were characterized by 1H‐NMR to assure the successful synthesis of the expected polymers. Molecular weight of all synthesized polymers was evaluated following gel permeation chromatography. The lower critical solution temperature of graft copolymers varied significantly when grafted to benzaldehyde containing PEG and after further functionalization of copolymer based poly(NIPAAm). The contact angle experiment showed the changes in hydrophilic/hydrophobic behavior when the polymers were exposed to different pH and temperature. Particle size measurement investigation by dynamic light scattering was performed to rectify thermo and pH responsiveness of all prepared polymers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Shape memory polymers (SMPs) are a novel class of shape memory materials which can store a deformed (temporary) shape and recover an original (permanent) shape under a shape memory thermomechanical loading–unloading cycle. The deformation mechanisms of SMPs are very complicated, but the SMPs also have a lot of advantages and the widespread application value and prospect. So developing proper constitutive models that describe thermomechanical properties of SMPs and the shape memory effect is very challenging and of great theoretical and application value. Based on the deformation mechanisms and considerable experimental investigations of SMPs, researchers have developed many constitutive models. This article investigates the deformation mechanism and introduces the recent research advance of the constitutive models of thermal‐sensitive SMPs. Special emphases are given on the micromechanical constitutive relations in which the deformation is considered being based on the microstructure of the SMPs. Finally, the lack of research and prospects for further research are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号