首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shaped metal deposition method using gas tungsten arc welding is a novel manufacturing technology that can be used for fabricating solid dense parts in layered manufacturing. This paper reports for the first time using the pulsed current shaped metal deposition technique for fabricating components using cold wire of AISI 308LSi stainless steel. The aim of this work was to investigate and compare the effect of pulse frequency and other deposition process parameters on the morphology aspects and microstructure characteristics of the manufactured components using pulsed and continuous current processes. The obtained results reveal that the structure of the deposited specimens produced via pulsed arc current is generally having finer grains, high residual ferrite, and absence of columnar grains. Pulse frequency and current ratio have a significant influence on the surface morphology and microstructure of the manufactured parts. Good metallurgical bonding with no sensitization effects can be seen in all tested specimens. The presented additive layered manufacturing method can be recommended for near net-shaped processing of austenitic stainless steel components, and it can be used as an alternative manufacturing method for fabricating metal components with free defects, higher corrosion resistance, and superior mechanical properties.  相似文献   

2.
Wire arc additive manufacturing(WAAM)has been investigated to deposit large-scale metal parts due to its high deposition efficiency and low material cost.However,in the process of automatically manufacturing the high-quality metal parts by WAAM,several problems about the heat build-up,the deposit-path optimization,and the stability of the process parameters need to be well addressed.To overcome these issues,a new WAAM method based on the double electrode micro plasma arc welding(DE-MPAW)was designed.The circuit principles of different metal-transfer models in the DE-MPAW deposition process were analyzed theoretically.The effects between the parameters,wire feed rate and torch stand-off distance,in the process of WAAM were investigated experimentally.In addition,a real-time DE-MPAW control system was developed to optimize and stabilize the deposition process by self-adaptively changing the wire feed rate and torch stand-off distance.Finally,a series of tests were performed to evaluate the con-trol system's performance.The results show that the capability against interferences in the process of WAAM has been enhanced by this self-adaptive adjustment system.Further,the deposition paths about the metal part's layer heights in WAAM are simplified.Finally,the appearance of the WAAM-deposited metal layers is also improved with the use of the control system.  相似文献   

3.
在三坐标雕刻机上开发出一种功能梯度材料增材制造装置,在低于水的凝固点温度下,将两种材料的水基膏体以一定比例进行挤出沉积,形成梯度材料零件。在该三维零件沉积成形过程中,配置好的材料不可避免地会存在结块和气泡现象,当结块分解或气泡释放时,会导致沉积过程中的挤压力不断变化,使得成形过程不稳定,成形零件质量差。在分析三维梯度材料沉积成形过程的干扰因素的基础上,通过实验建立了沉积过程中挤压力的动态模型,采用最小二乘方法进行系统辨识,完成了最小方差自适应挤压力控制器的设计,并用两种不同颜色的腻子粉(CaCO3)进行实验,验证了功能梯度材料快速沉积原理的可行性和控制器的有效性。  相似文献   

4.
This paper presents the research and development of an automatic hybrid manufacturing process which based on stereo vision and laser scanning technology to produce fully dense metal parts with CNC level precision. High performance metals, such as titanium alloys, nickel superalloys, tool steel, stainless steels, etc, can benefit from this process. Coupling the additive and the subtractive processes into a single workstation, the hybrid process, can produce metal parts with accuracy. The surface quality of the final product is similar to the industrial milling capability. It will certainly impact the future rapid manufacturing industry. To achieve such a system, issues, including the modeling of the metal deposition process, the automated path planning and accurate surface scanning of the hybrid manufacturing process, are summarized.  相似文献   

5.
The wire and arc-based additive manufacturing process applies arc welding technology; the wire material is melted by the arc discharge, and is then accumulated successively in this process. The wire and arc-based additive manufacturing process directly and locally adds material to the molten pool. By changing the material locally during the process, more than one kind of material can be used simultaneously in a single manufactured component. In this study, two kinds of dissimilar metal deposition were conducted. A combination used was a stainless steel and Ni-based alloy. Mechanical properties near the interface such as hardness and bond strength were investigated. As a result, it was found that the mechanical properties of the manufactured alloy were comparable to those of a bulk material. In addition, an additive manufacturing system and a torch path planning method for using more than two kinds of material were proposed. By using this method, highly functional shapes whose surfaces and inner structures are made of different material could be made.  相似文献   

6.
液压阀块是液压系统的重要组成部分,采用锻造-钻铣传统方法加工的流道只能采用直孔形式并且管路交叉沟通不灵活。选区激光熔融增材制造克服了传统加工的限制,可实现两端盲孔流道加工、任意走向及任意曲率流道加工,并能剔除非必需质量,实现液压阀块的集成化、轻量化和节能化设计。与传统阀块相比,金属增材制造液压阀块体积降低30%以上,重量降低50%以上。但是金属增材制造受到悬垂部件阈值角度限制,传统圆形截面流道加工存在局部支撑结构,而阀块内部复杂流道的支撑结构很难去除,因此削弱了增材制造技术在轻量化和节能化方面的效果。以减少内部流道的辅助支撑为目标,提出采用异形截面流道的设计方案,通过理论分析和仿真对比,实现少支撑甚至零支撑的内部流道设计效果,为液压元件的增材制造技术提供理论支撑。  相似文献   

7.
Additive manufacturing (AM) of metal parts combined with part redesign has a positive repercussion on cost saving. In fact, a remarkable cost reduction can be obtained if the component shape is modified to exploit AM potentialities. This paper deals with the evaluation of the production volume for which AM techniques result competitive with respect to conventional processes for the production of end-usable metal parts. For this purpose, a comparison between two different technologies for metal part fabrication, the traditional high-pressure die-casting and the direct metal laser sintering additive technique, is done with consideration of both the geometric possibilities of AM and the economic point of view. A design for additive manufacturing approach is adopted. Costs models of both processes are identified and then applied to an aeronautical component selected as case study. This research evidences that currently additive techniques can be economically convenient and competitive to traditional processes for small to medium batch production of metal parts.  相似文献   

8.
In additive manufacturing (AM), three-dimen sional objects are built layer by layer by joining each layer to the previous one. Those layers can be formed from the direct deposition of metallic drops resulting from the breakage of a micrometer jet. The jet is produced by ejecting through a nozzle/orifice a metal melted in a crucible. In this paper, we propose a novel technique to produce a continuous droplet stream of a low-melting-point alloy for additive manufacturing. Our technique does not make use of a crucible. Instead, the tip of a metal wire is melted by an induction heating system as it is introduced in the nozzle. If the values of the control parameters are chosen appropriately, a quasi-steady jetting regime is established. This method is much more energetically efficient than its counterparts because it consumes just the energy necessary to melt the demanded material at any times.  相似文献   

9.
针对在轨制造功率约束与金属增材成形高能量输入的矛盾问题,提出一种激光焦耳复合热源金属细丝增材制造工艺,激光功率仅约50 W,成功制造了宽高比高达40的薄壁结构,使用焦耳热加热丝材可以大大减少激光的功率,从而控制总的热输入,并对成形过程进行有效的热量管理,引入热阻概念进行递变参数优化的方法,有效减小了增材制造特有的台阶效应,成形件表面质量好,表面粗糙度Ra小于5 μm,优于激光选区熔融(Selective laser melting,SLM)工艺,同时,成形件无气孔和裂纹等缺陷,成形件的抗拉强度、致密度以及硬度分布等性能指标,也很接近制造原材料。结果表明,该激光焦耳细丝沉积(Laser Joule fine wire deposition,LJ-FWD)工艺,可以成为高表面质量零件增材制造的一个有吸引力方案,特别适合应用于太空在轨增材制造的快速成形。  相似文献   

10.
Welding-based additive manufacturing can potentially produce a cost-effective process for the production of dense metallic parts. Tungsten inert gas (TIG) welding-based additive manufacturing process uses wire as a filler material and offers a high deposition rate with low spattering. In this study, different orientations of wire feeding nozzle and TIG welding torch, such as front wire feeding (FWF), back wire feeding (BWF), and side wire feeding (SWF), were investigated for thin-walled metal deposition with enhanced dimensional accuracy and mechanical properties. The dimensional accuracy of thin-walls deposited at four different orientations were investigated in terms of deposition height and deposition width. The FWF orientation with higher wire feeding angle and SWF orientation produced poor dimensional accuracy in the deposition. FWF orientation with normal wire feeding angle and BWF orientation provided a decent dimensional accuracy and surface appearance. The deposited samples exhibited a similar trend for Vickers microhardness, residual stress, and microstructure for the four different wire feeding orientations.  相似文献   

11.
等离子熔积成形与铣削光整复合直接制造金属零件技术   总被引:7,自引:1,他引:7  
针对国内外现有的金属直接快速制造技术中存在的制件表面质量不高的瓶颈问题,开发了在制造过程中将等离子熔积增材成形与铣削光整减材复合的金属零件直接快速制造方法。研究该复合制造工艺参数对熔积成形性和形状特性以及热态干铣削刀具和工艺的影响规律,找到合理的工艺条件并用其试制出金属零件原型,为改善快速原型表面质量提供了有效的途径。  相似文献   

12.
Process planning for hybrid manufacturing, where additive operations can be interlaced with machining operations, is in its infancy. New plastic- and metal-based hybrid manufacturing systems are being developed that integrate both additive manufacturing (AM) and subtractive (machining) operations. This introduces new process planning challenges. The focus of this research is to explore process planning solution approaches when using a hybrid manufacturing approach. Concepts such as localized AM build ups, adding stock to a CAD model or section for subsequent removal, and machining an AM stock model are investigated and illustrated using virtual simulations. A case study using a hybrid laser cladding process is used to demonstrate the opportunities associated with a hybrid solution. However, unlike machining, the process characteristics from system to system vary greatly. These are portrayed via a high power, high material deposition feed rate laser cladding system. There are unique challenges associated with AM processes and hybrid manufacturing. New tools and design rules need to be developed for this manufacturing solution to reach its potential.  相似文献   

13.
王俊彪  冯冰  刘闯 《计算机集成制造系统》2007,13(10):2009-2012,2026
分析了飞机钣金零件制造模型的典型状态组成,以框肋零件为例描述了零件制造模型设计态、毛坯态、成形件态和成品件态的内容.在此基础上,针对人员、数据和流程数据管理三要素,建立了基于多态模型的飞机钣金零件制造模型管理方法.对于人员管理,定义了飞机钣金零件制造的人员角色及其主要职责,采用基于规则的权限控制方法;对于数据管理,采用多态模型组织制造模型,以成形件态为例描述了节点数据模型;对于流程管理,以成形件态成形模具所用几何模型的设计为例,建立了流程管理模型.最后,以产品数据管理系统为平台建立了集成应用框架,验证了制造模型管理方法工程化应用的可行性.  相似文献   

14.
In this study, an eddy current (EC) detector is integrated in an additive/subtractive hybrid manufacturing (ASHM) process. The detector facilitates in-process inspection and repair operations through material deposition, defect detection, and removal processes layer by layer. A feasibility test is carried out on eddy current detection of subsurface defects in additively manufactured parts by using an EC detector. The study compares the results obtained from the EC detection with those by the X-ray computed tomography and the destructive methods. Experiments and simulations are conducted to investigate the effect of excitation frequency on intensity of the eddy current signal. The effects of residual heat of an additively manufactured specimen and lift-off distance of an EC probe on impedance changes are also investigated. In addition, the effect of defect width on EC signal is analyzed. The study shows that the EC method is capable of detecting subsurface defects in the ASHM parts. It is promising to integrate the EC detection and subtractive manufacturing into additive manufacturing to produce parts with improved quality and better performances.  相似文献   

15.
Fused deposition modelling (FDM) is the most extended additive manufacturing technique up to date. In FDM, a thermoplastic material is extruded through a nozzle to form layers, and the final geometry is the result of consecutive superimposed layers. However, it is difficult to obtain an adequate dimensional accuracy for some applications due to the characteristics of the process. This paper proposes a method for increasing accuracy of the distance between parallel faces on FDM manufactured prismatic parts, consisting in replacing the theoretical values of CAD model dimensions by new optimized values. For this purpose, a model has been developed for predicting the dimensions of the manufactured parts, based on design characteristics. Particularly, this work has used an artificial neural network combined with an optimization algorithm, to determine the optimal dimensional values for the CAD model. Subsequently, CAD model is redesigned according to the dimensions provided by the optimization algorithm, and the part is manufactured. The results show that the application of this methodology allows for a reduction in manufacturing error of approximately 50 % for external dimensions and 30 % for internal dimensions.  相似文献   

16.
The fabrication of multi-material structures using Ti–6Al–4V and copper was explored with the additive manufacturing (AM) technology of electron beam melting (EBM). A new method was developed that included multiple build sequences to accommodate both materials. The process was enabled by machining a start plate so that the parts built with the first material could be press fit into the plate, providing a flat surface on which the second material fabrication would occur. This method provided the ability to fabricate simple multiple metallic material components built in the Z and X directions [1]. Registration of the electron beam was performed manually resulting in slight misalignment for the shift of diameters of specimens built in the Z direction, and along the width and length for specimens built in the X direction. Microstructures observed and hardness values measured for copper and Ti–6Al–4V were different to those observed in normally fabricated EBM parts. These observations might be explained by the different processing conditions required for multi-material fabrication in contrast to the regular EBM process where parts are built in a single machine run. The hardness profiles for as-fabricated and HIPed multi-material parts depicted an increase in hardness for both materials close to the interface with values leveling off to those of single material EBM fabricated parts as measurements proceeded away from the interface. As the benefits of EBM processing are exploited, the method introduced in this research can have profound implications in many technological applications including metal extraction, energy production and for the repair of metallic components.  相似文献   

17.
We propose an in-process height measurement system for a weld bead and feedback control system for wire-feeding speed for high-quality laser deposition. Metal additive manufacturing, especially laser metal-wire deposition, is effective for complex shape fabrication and repair processing. However, we must control the gap between a weld bead and a feed wire in an optimal range for high-quality deposition. Conventionally, the Z-stage pitch for multi-layer deposition must be precisely adjusted by each deposition shape. In this paper, we design an in-process height measurement system that is integrated in a laser processing head, which measures the weld bead height by a line section method. We decreased the influence of the intense thermal radiation generated from a melt pool by inserting the band-pass filter of the line beam's wavelength in the imaging system and optimizing its line laser power. Consequently, our system can measure the weld bead height near the melt pool, which is 4 mm in front of it. Next we show that our proposed system can measure the weld bead height during wire-laser metal deposition with 50-μm accuracy by comparing its value to the true value. Finally, we achieved a cylinder shape deposition of 50-mm height, regardless of the Z-stage pitch and the cylinder diameter of the multi-layer deposition, by controlling the wire-feeding speed based on the measured weld bead height.  相似文献   

18.
Fused deposition modeling (FDM) is a process of fabricating three-dimensional physical models by layered manufacturing. However, the surface quality of acrylonitrile butadiene styrene (ABS) built with FDM technologies is not acceptable and is not satisfactory for most general engineering purposes. In this study, a polishing system was demonstrated to enhance surface finish of ABS parts fabricated by FDM. Polishing mechanism for ABS parts was investigated. The features of this system include high polishing efficiency, no waste chemicals, ease of operation, with excellent dimensional accuracy, and low equipment costs. Improving surface roughness of ABS parts by the use of acetone vapor not only has required dimensional accuracy but also has high process stability. A great reduction in average surface roughness for ABS parts about 98% was obtained. The polishing mechanisms for ABS parts fabricated by additive manufacturing were investigated in this study.  相似文献   

19.
Wire and arc additive manufacturing (WAAM) is an emerging technology which has the potential to significantly reduce material usage and manufacturing time through the production of near net-shape components with high deposition rates. One of the main problems of this process is the residual stresses and distortions of the deposited workpiece. To help understand and optimise the process, finite element (FE) models are commonly used; however, the conventional transient models are not efficient for simulating a large-scale WAAM process. In this paper, the stress evolution during the thermal cycles of the WAAM process was investigated with the help of a transient thermomechanical FE model. It was found that the peak temperatures experienced during the thermal cycles of the WAAM process determine the residual stress of that point. Based on this finding, an efficient “engineering” FE model was developed. Compared to the conventional transient thermomechanical approach, this model can save the computational time by 99 %. This new model produced distortion and residual stress predictions that were nearly identical to the original transient model and the experimental results.  相似文献   

20.
Laser-engineered net shaping, referred to as LENSTM process, is an additive manufacturing technique for building metallic parts, layer by layer, by direct deposition of metal powders in a melt pool created by a focused laser beam. The process involves rapid melting and solidification of a controlled amount of injected metal powders as a laser beam scans over each layer building the structure from the bottom to the top. Due to its unique capability to deposit precise amounts of powder material at a desired location, the LENSTM process finds potential application in rapid tooling, prototyping, precision repair work, and manufacture of complex, intricate components with varying compositions. The peak temperature and thermal cycle experienced by each layer influence the final mechanical properties and dimensional accuracy of the part. An understanding and quantitative knowledge of the peak temperature, melt pool dimensions, and thermal cycles experienced in the deposited layers are essential for a priori selection of the process parameters in LENSTM technique. It is important to ensure that the deposited layers have the desired dimensions, good interlayer bonding, and requisite mechanical properties. In an attempt to understand the process parameters to be used in achieving the desired nature of deposition, a three-dimensional model is developed based on finite element method to numerically simulate heat transfer phenomenon in LENSTM process considering deposition of SS316 powders on a substrate of the same material. The computed temperature profiles are first validated with experimental results reported in the literature. The influence of process parameters on peak temperature, thermal cycles, and melt pool dimensions are studied subsequently. The continuous movement of laser and synchronized activation of elements depicting addition of powder particles are incorporated through an externally written user subroutine and using the element deactivation and activation features in the commercial finite element software ABAQUS 6.7. A unique non-dimensional parameter specific to LENSTM process is defined considering the combined influence of process parameters and material properties. The non-dimensional parameter is further used to serve as a guideline for the selection of appropriate process parameters that can result in a steady melt pool dimension, thereby ensuring a target layer width with good interlayer bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号